LT

Final Report

Volume 3

A Parallel and Pipelined Architecture for Estimation of
Direction of Arrival using a Bilinear Transformation Method.

.«».

DTIC

M ELECTE 9
\ wWT041993 8 #

“ A

Submitted to:

Grant No. N00014-91-J-1011
Department ot the Navy
Office ot the Chief of the Naval Research
Arlington, VA 22217-5000

Submitted by:

M. M. Jamali Principal Investigator
S. C. Kwatra Co-Investigator
Ravindranath Suria Research Assistant

Department of Electrical Engineering
College of Engineering

;fohis dg}c:umsm bas heon approved | The University of Toledo
1 public teiens . s .
distribution is smtimied % 12 Toledo, Ohio 43606

Report No. DSPH-3
August 1993

| 93-23065
- GAWET o>¢ 98 10 1 105

Final Report

Volume 3

DTIC QuaLrry INSPECTEp 4

A Parallel and Pipelined Architecture for Estimation of
Direction of Arrival using a Bilinear Transformation Method.

Accnmon Lor
Submitted to: NTIS f;"?::‘u}'u \%
D Tt 0]
Grant No. N00014-91-]-1011 j" 3
Department of the Navy L e
Oftice of the Chief of the Naval Research By ,q a\s 3é SO
Arlington, VA 22217-5000 Dit e o e
,__ : }\.- B
Submitted by: O:! E i
1
M. M. Jamali Principal Investigator A-1 i !

S. C. Kwatra Co-Investigator
Ravindranath Suria Research Assistant

Department of Electrical Engineering
College of Engineering
The University of Toledo
Toledo, Ohio 43606

Report No. DSPH-3
August 1993

This report contains part of the work performed under ONR grant N00014-
91-J-1011 during the period October 1990 to July 1993. The research was
performed as part of the Masters thesis requirement of Mr. Ravindranath

Suria.

M. M. Jamali

Principal Investigator

Abstract

High resolution direction-ot-arrival (DOA) estimation is important in
many sensor systems. [t is based on the processing of the received signal and
extracting the desired parameters of the DOA of plane waves. The estimation of
angle of arrivals of multiple broadband sources has been carried out in a variety
of ways over the past few years. In this research an algorithm for broadband DOA
estimation using a simple bilinear transformation matrix is invest.igated and a
parallel and pipelined architecture is developed. When compared to other
coherent approaches, this algorithm has the advantages of being non-iterative
and does not require any initial estimates of the angles of arrival and all angles
are computed from a single step of coherent subspace calculations. Hence it 1s a
very suitable algorithm for computation of DOA using dedicated hardware. The
advances in the area of Very Large Scale Integration (VLSI) have made it
possible to design special purpose hardware which has the advantage of very
high speed and overall lower system cost when compared to a system which
runs off a general purpose computer.

The algorithm is first analyzed and modified to exploit the maximum
parallelism in the computations. Each part is simplified and made suitable for
execution with special purpose hardware. The design considered the tradeotfs
between the timing requirements and the number of processors in each stage.
The final part of the research is the design and implementation of a generalized
covariance matrix processor for several DOA algorithms, namely the bilinear
transformation method, the BASS-ALE method and the narrowband MUSIC
algoritnm. A VHDL simulation of the processor was done with PowerView, the
Sun workstation based CAD tool from ViewLogic. The processor was simulated

and layed out using GDT the IC design package from Mentor Graphics.

|39

S 1}

CONTENTS

Introduction

1.1

1.2

o

Array Signal Processing

A Broadband DOA algorithm

The Bilinear Tranformation Algorithm

2.1

N
(%]

)
)

Introduction
Problem Formulation

Problem Solution

Parallelization and Moditication

3.1
3.2
33

2.4

Introduction
Computation of the Transformation matrices
Computation of the G matrix

Cholesky Decomposition

Hardware Implementation

4.1

4.2

4.7

Introduction

The Covariance Matrix Processors
Processors for computation of G matrix
Computation of G,

Forward Substitution

Cholesky Decomposition

Processor wordsize verification

A Combined Covariance Matrix Processor

51

Introduction

1854

st

‘2

~

11

17

19

19

(oY] 92 (%) 9
~} (RS ~J W)

[OF]
~J

12

=

£

52 Covariance matrix computation tor narrowband MUSIC
algorithm
53 Covariance matrix compuatation tor broadband BASS-ALE

algorithm
54 Covariance matrix compuatation for Bilinear Transformation
algorithm

55 Processor Architecture

Ul

5.1 powerview 5.1
5.52 Behavioral simulation of the architecture
VLSI Implementation
6.1 Introduction
6.2 Generator Development Tools
6.2.1 GDT Lxcells - generation of basic gates
6.2.2 GDT Led - Schematic creation
6.2.3 GDT Lsim - Simulations
6.24 GDT Autocells - layout generation and routing
6.3 Processor Implementation
6.3.1 The input loading stage
6.3.2 The arithmetic unit

6.3.2 The control units

Conclusions
Appendices
Bibliography

19

th
{8)

(1]
(o))

60

~]
N

~J
v

~l
(o}

83

98

| BV

3
57

N

wl

"JI

$1]

ot

[}

)

The input loading stage
The arithmetic unit

The control units

o)

3.1
3.2
3.3
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
52

5.3

5.4

55

5.6
57

List of Figures

Mathematical Transformations in the algorithm
Flowchart of modified Bilinear Transformation Algorithm
Flowchart for the computation of Cholesky Decomposition
Overall system block diagram of the algorithm
Architecture for computation of covariance matrix
Flowchart for computation of covariance matrix

Block diagram of covariance matrix processor

Flowchart for computation of G matrix

Processing element for computation of G matrix
Architecture for the Forward Substitution operation
Processing Element for Forward Substitution operation
Architecture for Cholesky Decomposition

Processing Element for Cholesky Decomposition

Direction of arrival estimation using quantized and
unquantized data

Processing board for computation of covariance matrices

43
45

Flowchart for the computation of covariance matrix for Narrowband

MUSIC algorithm

Flowchart for the computation of covariance matrix for wideband

BASS-ALE algorithm

Flowchart for the computation of covariance matrix for wideband

Bilinear Transformation algorithm
Flowchart for the combined covariance matrix processor
Block diagram of the combined covariance matrix processor

Schematic of mode decode unit

48

52

55
58
58
61

5.16
5.17
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Schematic of load control unit

Viewdraw Schematic of the input loading block

Viewdraw Schematic of the narrowband MUSIC control unit
Viewsim results of narrowband MUSIC control unit
Viewdraw Schematic of the BASS-ALE control unit

Viewsim results for simulation of BASS-ALE control unit

Viewdraw Schematic of the bilinear transformation control unit

Viewsim results of bilinear transformation control unit
Viewdraw Schematic of the covariance matrix processor
Viewsim results of the covariance matrix processor

Led Schematic of combined covariance matrix processor
Led Schematic of input loading stage

Led Schematic of 16 bit input latch

Led Schematic of load control unit

Led Schematic of decoder used in the input latch circuitry
Schematic of systolic array signed binary multiplier

Led Schematic of multiplying stage

Lsim simulation results of multiplying stage

Led Schematic of full adder used in the adder and accumulator
Led Schematic of 9 bit ripple carry adder

Lsim simulation results of 9 bit ripple carry adder

Led Schematic of basic full subtractor

Led Schematic of 9 bit subtractor

Lsim simulation results of 9 bit subtractor

Led Schematic of accumulator

Lsim simulation results of accumulator

Led Schematic of Master Slave Flip Flop used in the counters

6l
63
64

6.18
6.19
6.20
6.21

6.22
6.23
6.24
6.25

Led Schematic of 6 bit counter used in the control circuitry

Led Schematic of control unit for Narrowband MUSIC algorithm
Led Schematic of control unit for BASS-ALE algorithm

Led Schematic of control unit for bilinear transformation
algorithm

Lsim simulation of the covariance matrix processor

Layout of the combined covariance matrix processor

Pin diagram of the combined covariance matrix processor

I/O diagram of combined covariance matrix processor

CHAPTER 1
Introduction
1.1 ARRAY SIGNAL PROCESSING

The estimation of the direction of arrival (DOA) in sensor systems has
been one of the frequently considered problems in digital signal processing.
The algorithms used to compute the DOA are based on the processing of the
received signal and extracting the desired parameters to estimate the direction

ot arrival.

Traditionally the approaches to this problem have been separated into
the narrowband case which assumes that the signals can be considered to
have only one frequency component and tiie broadband or wideband case in
which the signal is considered to consist of a band of frequency components.
So far the narrowband case has engendered the maximum interest and a lot

of algorithms have been used to achieve the results.

Most narrowband approaches use the so called maximum likelihood
(ML) and the maximum entropy (ME) methods [1-3]. The most popular
methods for narrowband estimation are the Multiple Signal Classification
(MUSIC) and the Estimation of Signal Parameters by Rotational Invariance
Techniques (ESPRIT) algorithms [4,5]. Computationally they are the most
efficient and hence are considered the most promising candidates to perform

the required functions.

The estimation of angle of arrivals of multiple broadband sources has

peen carried out in a variety of ways over the past few years. The

conventional approach is to form a generalized correlator [6] to estimate the
Time Ditterence Of Arrival (TDOA) ot the signal at the sensors. Some
methods are similar to the narrowband case. The so called maximum
iikelihood based methods {7-9] require knowledge of the source and noise
spectra and are computationally expensive. The parameter estimation based
methods [10-12] , assume Auto-Regressive Moving Average (ARMA) models
for the received signals and the estimated ARMA parameters are utilized for
the TDOA calculations. Such model based methods have computational
complexity and their effectiveness depends upon the accuracy of the model
chosen to represent the unknown broadband signals. Another way is use a
eigendecomposition approach for the estimation. This approach involves the
incoherent combination of the eigenvectors of the estimated spectral density
matrices at each frequency bin to calculate the TDOAs. One way (13,14] is to
use the initial estimates of the angles of arrival to transform the eigenspaces
at different frequency bins and generate a single coherent subspace which is
eigendecomposed to give more accurate estimates. Well separated angles can
be estimated by focusing at different angles at each time and iterating to obtain
the accurate results. Most of these methods use algorithms that principally
operate in the time domain and have the disadvantage of either needing
initial estimates of the angles of arrival or having to perform several

iterations before arriving at the result.

1.2 A BROADBAND DOA ALGORITHM

Shaw and Kumaresan [15], proposed an algorithm for broadband DOA
estimation using a simple bilinear transformation matrix. An approximation
resulting from a dense and equally spaced array structure is used to combine

the ‘ndividual narrowband frequency matrices for coherent processing.

When compared to other coherent approaches, this algoritha, has the
advantages of being non-iterative and does not require any initial estimates ot
the angles of arrival and all angles are computed from a single step ot
coherent subspace calculations. Hence it was found to be a suitable algorithm

for computation of DOA using dedicated hardware.

The first objective of this research 1s to modify and parallelize this
algorithm so that maximum computational effectiveness can be exploited.
The algorithm is broken up into computational units and various
architectures from systolic arrays to MIMD machines are considered tor each
module. The most appropriate one is presented and a complete system is

developed for the whole algorithm.

The next part of the thesis deals with the implementation ot a
combined covariance matrix processor. The computation of the covariance
matrix is a common step in all DOA algorithms. Along with the bilinear
transformation algorithm, the narrowband MUSIC [16] algorithm and the
broadband BASS-ALE method [17] are considered and and a processor is
developed which is capable of computing the covariance matrix for any of
the three algorithms. The processor is simulated at the architectural level

using VHDL.

The VLSI implementation of the processor is considered next and an
ASIC chip is proposed which would contain covariance matrix processor. The
detailed design of the processor is performed and the processor is simulated at

the gate level using GDT[21-24].

Chapter 2 explains the adapted version of the broadband bilinear

transformation algorithm proposed by Shaw and Kumaresan. The authors

present a generalized algorithm which has been adapted for using in a system
with eight sensors. Chapter 5 explains the modifications to the algorithm
which will make it more computationally etficient. This includes the
introduction of the Choleskv Decomposition, the modularization and the
parallelization of the algorithm so that it can be easily implemented with a
parallel architecture. Chapter 4 deals with the design of the system
architecture. The proposed architectures for the various modules are shown
and the processing elements at each stage are described. Chapter 5 describes
the design of a combined covariance matrix processor which has been
explained above. The behavioral simulation of the processor is also described
and the results are shown. Chapter 6 deals with the VLSI implementation of
the processor and the gate leevel simulations that were done. The results and
conclusions are presented.in Chapter 7. The appendices contain the Fortran
code for the algorithm simulation and the VHDL code for the behavioral

simulation of the various modules.

CHAPTER 2

The Bilinear Transformation Algorithm

2.1 INTRODUCTION

The thesis is broadly based upon a novel DOA estimation approach
proposed by Shaw and Kumaresan[15]. This algorithm estimates the DOA of
broadband sensor signals by using a simple bilinear transformation matrix. In
this algorithm approximation resulting from a dense and equally spaced array
structure is used to combine the individual narrowband frequency matrices
for coherent processing. This algorithm is non-iterative and does not require
any initial estimates of the angles of arrival. This algorithm has been adapted
for use in an eight sensor system. The basic concept of the algorithm and the

mathematical transformations it involves is presented in this chapter.

The system that is considered consists of a linear array of 8 sensors
which are spaced at equal intervals. They therefore receive signals that are
slighty different from each other. The spatial difference in the position of the
sensors is reflected by a proportional phase shift in the observed signals at the
different sensors. The noise at the sensors is also considered and an additive
component is chosen to represent the effects of all small sources. They can be
combined and modelled as a Gaussian and stationary process by using the

central limit theorem.
2.2 PROBLEM FORMULATION

Consider a linear array with 8 sensors which are spaced at equal

distances. The incoming signal is assumed to be composed of d plane waves

emitted from d sources (d < 8), with an overlapping bandwidth of B Hz. The

signal from the kth sensor is expressed as

d
A
e (t) = zsi(t -(k-1) < sin®;) + ny (t) 2.1)
i=1
-I <t <I 1€k <8
2 " 72 =t =

where si(.) is the signal radiated by the ith source, A is the separation between
the sensors, ¢ is the propagation velocity of the signal wavefront, 6; is the
angle that the ith wavefront makes with the line of array and ny is the

additive noise at the ith sensor.

Performing the FFT and representing the two sides by their Fourier
coeffficents

d
A
Ry (wy) = Ze‘f“’l k-1 7506 G, (wy) + Ny (wy) (2.2)

i=1

. 2 . .
with w; = ?nl, I'=1l,.. li+ns, where w; and w,, , are the frequencies which

nf

span the bandwidth B.
Writing in the matrix notation

Rty) = A(w;) S(w;) + N(wy) (2.3)
where these matrices are composed of the column vectors

R(w;) = [r16or) ... o)’ (2.42)

NGy) = [nq€wr) ... nglwn)]? (2.4b)

SGey) =[si(wy) ... sylwy)]T (2.40)

and the matrix A(w;)is a8 xd direction finding matrix

1 1
e . ety
AGw;) = ‘ (2.4d)
e-;/'w: L 4] e'};'TUJl'J
A
T =sin 6, (2.4e)

T, being the TDOA of the ith source. Assuming that the observation time is
large enough when compared to the correlation time of the processes, the
covariance matrix of the Fourier coefficient vector r(w;) will approach the

spectral density matrix

™
9
a

K(w;) = A(w)P (w))AYw)) + 6,° P (wy) (

where K(w;), P (w;) and P (w;) are the spectral density matrices of the
processes 1;(.) sg(.), n;(.) respectively. The noise process is assumed to be
independent of the sources and the noise spectral density matrix except for a

multiplicative constant o,’".

The problem now reduces to the estimation of the 1t s from the
covariance matrices K(w;) and the noise representations. Then the angles of

arrival can be computed from the Equation (2.4e).
2.3 PROBLEM SOLUTION

This particular approach utilizes a bilinear transformation and dense
array approximation to form the transformation matrices. The bilinear

transformation matrix that is used can be synthesised from the coefficients of

the polvnomials pi(z) = (1+2)M-* (1-z)k-F, where k =1, 2, ... M-1. M here
indicates the number of sensors that the svstem is using, which in this case 1s
equal to 8. Hence the transformation matrix in this case is an 8«8 matrix, the

synthesis of which is shown in the next section.

E(w;) denotes a diagonal matrix given by

(1+ etw:n)?

EG) = (2.6)

(1 +e i f,l).;

Premultiplying A(w;) by the transformation matrix B and simplifying the

product gives

8 1 1 m
.y . Warg
jtan— jtan——
BA(w;) = E(w;) (2.7)
) wyry . watq .
(j tan—5—) (jtamr—)" _

Assuming that the sensor to sensor separation A is small when compared to

. . . wyr .
the wavelengths of the incoming signals, tan —2—1can be approximated by

wyry
2 a

we L
Now consider an 8x8 diagonal matrix D(—ZEI—) whose (k,k) th term is given by

W, k1
dkk =(]7‘;;-) (28)

where 1w, =2rf. and f- is the midband frequency of the signals.

It can be approximated as

r 1 1
w, wery Wwery
D(E)JBA(w)) = EGo;) (2.9)
(toory)7 (werg)”

There is a new matrix A(w,), whose columns are the transformed direction
frequency vectors which are dependent upon w,. rather than w; . The

columns of the matrix are linearly independent as long as r, #r, fori =k .

A new transformation matrix is defined as

W, (A
—) =D(
Wy

w

T()B (2.10)

This does not depend upon the arrival angles and can hence be computed
independently of the angles. Using these transformation matrices for each
individual narrowband frequency, all the spectral estimates can now be

combined at the midband frequency in the following manner;

l1+nf
G= 2 T (w;) K@) Ty) (2.11)
i=h

h¥ng
and Gnp= Y T (w) Pa(w;) T'or) (2.12)
1=
Then the coherent signal subspace theorem for the matrix pencil (G,G,)

is used to estimate all the angles of arrivals by computing the maximas of the

measure given by

1
J(8) =) (2.13)
> 11 ag (w,) ey (we) | |2
k=d +1

where ey (w,) denotes the generalized eigenvectors of the matrix
pencil (G,G,), which correspond to the 8 - d eigenvalues, and ag (w.)

represents the new direction frequency matrix.

—
—
~—

L

—

CHAPTER 3

Algorithm Parallelization and Modification
31 INTRODUCTION

The first objective in the implementation of signal processing
algorithms such as the one outlined in the previous chapter, is to modify
them in such a way so that the maximum possible parallelism and pipelining
can be achieved which would enable the real time implementation of the
algorithm. The modification of the algorithm outlined in the previous
chapter takes into consideration the various tradeoffs involved in the
ultimate realization of the hardware like the timing and cost considerations

which would make the project viable.

Figure 3.1 shows the mathematical transformations that the algorithm
involves. The algorithm has been modified into discrete blocks so that the
system design can be done in a modular fashion. The sequence of steps

involved are as follow:-

1. Collection of sensor samples.

Computation of FFT of the samples.

Rl

Formation and averaging of covariance matrices.

{5

. Computation of the G and G, matrices.

Ui

. Perfoming the Cholesky Decomposition.
. Performing the eigendecomposition.

. Obtain eigenvalues and eigenvectors

[* SIS B N

. Estimate number of sources and angles of arrival.

1

The main modification introduced in the algorithm involves steps 3-8
outlined above. The actual calculalation of the angles of arrival is done by the
power method which estimates the number of sources and the DOA. To
obtain the matrix in a form which is suitable for the power method it is
necessary to decompose it and to obtain the eigenvalues. The Householder
transformation and the QR method are used to perform the
eigendecomposition. Another important modification is the use of the
Cholesky decomposition to convert the G and G, matrices into the standard

form for eigendecomposition.

It is important from the implementation point of view to parallelize
the algorithm so that the algorithm can be made suitable for real time
processing. The algorithm was studied and all the modules which can be
computed offline were identified. A flow chart of the modified and

parallelized algorithm is shown in Figure 3.2.

In this case we consider a linear array of 8 sensors A segment of 64
samples is considered, which forms the single step input to the next stage of
the FFT processors. As shown in Figure 3.2 a single estimation of the angles of
arrival involves the processing of 64 such segments of 64 samples each. After
64 samples are collected, the next step involves the transformation of these
signals from the time domain to the frequency domain by performing a 64
point FFT. The output is a symmetrical vector in the frequency domain. One
side of the vector is discarded leaving a 33 element vector which is

representative of the input signal at that sensor.

Collect X (t)
n

i=1.8;n=1.N

Compute FFT for every X .(t)
X, (ol) L=L1 . L

1+nf
l

Compute X (oL) X (alL)
nj nk

J:lm k:j,..m L-‘—‘L]

L

1+nf

|

Compute Average for

N
2 X A (wL) Xnk(u)L)

L
N n=t
l
Form
A N H
Kwh= 12X (ol)X (wl)
Nn=1
I=L,L+1 ..L
1 1 1+nf
|
Compute
Ll+nf A H
G=2Y T(oL)K(el) T(wL)
L=L
1
and
L1+n.f H
G= 2 T(wl) P, (el)T(wl)
L=L,

(Perform Cholesky Decomposition)

Convert GX=AGX
to the standard eigenvalue

HY =AY

Perform eigendecomposition
- position of (G, 1)

Continued...

13

Continued...

Obtain
AL A
1 m
e . e

A
estimate d number of sources

estimate angle of arrival

1
P®) = -
M
H
2 ae(m) |
k=d+1 8k ¢
I
where
1
a = QT
[of
2
(0 1)
m-1
(@ 1)

Figure 3.1 :

Mathematical transformations in the algorithm

14

PRECOMPUTATION

Estimation of
noise spectral
density matrices

F, (W)

O ST U e L L T R T R A A

Sensors
(Samphng and bufferi

J

]

-
=

F XXX XTI RN FF R RN R RN N EARE RN R]

64 Loops
Formation of Formation and
Transformation averaging of
matrices covariance matrices
T (w) _J K (W)
33 LOOPS ‘----.--l
ik e B R
Computatlon of : 3 Computation of] : 33 Loops
P,(w) E E G J E
-5.--.-: E lG ;.I.---."
I‘I [
Cholesky L and E Forward
decomposition LT f‘ Substitution
e E \. J
Householders
and QR
transformations
\ y
r -)
Power meihod
(Estimation of
angles of arrival)
G

Figure 3.2 : Flowchart of modified bilinear transformation algorithm

The next block is the calculation of the covariance matrix at each
frequency bin. Essentiallv the covariance matrix consist- ot the product of the
frequency vector and its Hermetiar. which is obtained from the corresponding
elements in the FFT output vectors. Hence for the 33 different narrowband
trequencies there are 33 different covariance matrices independant of each
other. These matrices are averaged over the 64 segments before being passed
on to the next step in the algorithm which is the projection of the covariance
matrices K(w;) onto the single midband frequency in the spectrum to

compute the G matrix.

The computation of the G matrix requires the transformation matrices
T(w;) which are precomputed as shown in the diagram. As seen from
Equation(2 8) in the previous chapter the computation of the matrix involves
the knowledge of the narrowband frequencies in the bandwidth. Given a
specific problem such an estimation of the frequency bins is made by splitting
the bandwidth into 32 equal parts and taking the frequencies at the boundary.
With this initial assumption of the narrowband trequencies in the spectrum
of the incoming signals the transformation matrices can be computed oftline.
This is possible becauise the matrices are unique for a set of frequencies and
are independant of the angles of arrival of the incoming signal. Hence these
invariant matrices can be stored in a ROM for a dedicated architecture and can
be called up whenever they are required during the processing. However an
architectural model has been developed to compute the transformation
matrices on line which would enable the system to be more general purpose
and allow it to run scans over different frequency ranges witho..t the initial

knowledge of their frequency components. The computation of the actual

transtormation matrices is outlined below tollowing the principles explained

in the previous chapter.
3.2 COMPUTATION OF TRANSFORMATION MATRICES
The transformation matrix is derived as tollows:

Let B be a matrix constructed trom the coefficients of the polvnomial
pi(z) = (1+2)% (1-2)%%, where k =1, 2, ... 7. K denotes the number of the row ot
the 8 x 8 matrix which is formed. In this case the nonsingular matrix has been

computed and is shown below

1 7 213535217 1
1 59 5-5-9-5.1
13 1551 31
B - |1 1-3-333-- 3.1
1-1-3 3 33 -1 1
131 5-5-1 3-1
15 9-5-5 9-5 1
1 -7 21-35 3521 7 -

From this B matrix the transformation matrix can be computed
w

according to Equation (2.10). For the matrix D(-2;51') , the (k,k) th term is

given by

The transformation matrix can now be written as shown in Equation (3.2)

The matrix T can thus be computed and is stored in a ROM and is
retrieved by each processor. The next precomputation block is the calculation
of the G, matrix which is the estimate of the noise spectral densitv that is
expected to be present in the signal. The algorithm requires a previous
knowledge of the noise in the system which is expressed in terms of the P,
matrices at each frequency bin. The procedure for calculating the G, matrix
involves two matrix multiplications and is similar to the computation of the
G matrix from the covariance matrices. The calculations are pertormed 33
times, once for each frequency component and are then averaged at the

midband frequency.

B p 7p? 21p> 35p* 35p° 21p® 7p’ pBﬂ

p 5p° 9p° Sp' Sp° 9p® 5p7 p°

p 3p -p> 5pt 5p° p® 3p p°

pp’ 3 3t 3p° 3p® pf p°

TS o gt e gt 3ps apt . p
p 3p* p spt 5p° pb 3p7 p°

p sp> 9p° -5p' 5p° 9p 57 p°

p -7p? 21’ -35p' 35p° 21p® 7p7 p°
s ——

The equation governing this transformation is shown below.

Iy +n¢
Gn= z T (w;) Polwy) T w)) (3.3)
=l

The matrix G, is then stored in the ROM and accessed at the time of the

Cholesky decomposition.

I8

------h----1

3.3 COMPUTATION OF G MATRIX

The G matrix which is the combination at the midband frequency of all
the individual covariance matrices of different narrowband components
requires the projection of these matrices by the transformation matrices and

involves two matrix multiplications as shown in the equation below.

1y +ng
G= Y T Go) KGey) TGy) , (3.4)
I=f
The process goes through 33 iterations as shown in the flowchart. Each
loop involves two matrix multiplications which are done sequentially,
because the input to the second operation is the output from the first.
However parallelism has been achieved inside each operation as it is

performed in one cycle. The computation of the G matrix gives the matrix

pencil (G, G,,) of which G,, has been precomputed.
234 CHOLESKY DECOMPOSITION

The further processing of the signal requires that it be organised into a
standard form so that certain standard operations of matrix algebra like the
eigendecomposition can be performed. The algebraic manipulations which

are performed to achieve the objective are described below.

G, and G are two matrices which need to be put in the standard form

such that

-~
W
Ji
g

Gx = lG"x

where A = the eigenvalues of G

19

X = the eigenvector matrix of G, and G
Decomposing G, into
G, =LLT (3.6)
and substituting G,, in the equation and multiplying both sides by L1 gives
LIGLT.LTX=A LILLTX
Defining L1GLT=H and LTX=Y (3.7)

The standard form required for eigendecomposition can be written as

HY=AY (3.8)

The decomposition G, =L LTis obtained by doing the Cholesky
decomposition which is the next step in the algorithm as shown in the

flowchart.

The flowchart of the Cholesky decomposition is shown in Figure 3.3.
The objective of reducing to a lower triangular matrix is achieved by
computing the elements below the diagonal according to the equation

i-1
aki - Y Aijak;

- =
Ak = aii (3.9)

The diagonal elements are however computed by the formula

i
H

START

Yes

Yes

k<8

No

STOP

Figure 3.3 Flowchart for Cholesky Decomposition

S N I TN TS I B N N N TE B B e

Ml W E W EE =m

, k-1
apk = agk - Zak;’z (3.10)
1=1

Once the lower triangular matrix L has been computed the transpose LT
can be obtained.. The next step is to obtain the two matrices H and Y. This
part needs the calculation of the inverse of the lower triangular matrix L as is
seen from Equation(3.7). This computation is both time consuming and
complex especially for real time applications. The ultimate objective is not to
calculate the inverse and to circumvent this requirement, a simple algebraic

manipulation is described below:

Assuming a matrix W such that

LW=G (3.11)
we have
W=L1G

Taking the transpose and premultiplving both sides of Equation (3.11) by L-1

gives
L-1w =L (L1oT
=L1 GT(L-HT
= L1 G(LHT (as G is Hermitian)
=H
Hence
LH = WT (3.12)

9
1J

Considering the two Equations (3.11) and (3.12) it can be seen that the
problem of computing the inverse is now reduced to the computation of the
H matrix by two torward substitution operations. First the matrix W is
computed from the Equation (3.11) as the other two matrices are known.
Then it is transposed, which is a simple routing exercise in the architecture
and the result in Equation (3.12) is used to compute the H matrix.The

computation of Y also follows the same procedure.

The resultant matrices are now in one particular frequency and can be
treated as a narrowband case. The two most common methods that can be
applied are the MUSIC and ESPRIT algorithms. In this case the MUSIC
algorithm is applied. First the Householders and QR transformations are
performed to reduce the dense matrix into a diagonal one and then the power

method is used to compute the angles of arrival.

"CHAPTER 4

System Architecture and Design

4.1 INTRODUCTION

In the hardware implementation of the proposed algorithm it is
necessary to consider the tradeoffs between the timing requirements and the
number of processors in each stage. Though parallelization and pipelining of
most tasks in the process is possible this would require a large number of
processing elements which are not really necessary as far as the timing
requirements are concerned. Since the processing speed is going to be
determined by the sampling rate at the sensors which is not very high, the
basic system is configured for a system with 8 sensors. Therefore the
architecture is designed such that each stage has 8 blocks of processors with
the processing done in such a manner that the flow of data between
processors is minimized. The system can thus be configured for a different

number of sensors with minimal alteration at the architectural level.

The overall block diagram of the architecture is shown in Figure 4.1.
The first part shows the sensors and the buffering stage. To obtain one
segment of data for further computations each of the sensors sample 64 time
delayed elements. The input to the FFT processors is therefore a 64 element
vector and a buffering stage is provided to store and accumulate the data. The
buffer has a control mechanism to coordinate data flow from the FFT
processors. The data is transferred to all the processors simultaneously a
sample at a time. A sample consists of a complex element with data being

represented in signed 8 bit numbers for the real and imaginary parts.

L J 3 1 L1] L1 L___] sensor
' . ' Array
] [] [] a [} L] [
[] [] | 1]]] [] .
] [] [| [q L} L]
] L 1] [L] L]] []
«]]) 1] » 2 |]
1 L]] L] [] . L]
3 [] [] 1.] L} |] L]
] L]] [1 [] .]
Sampling buffer
y i y .
FFT
DSP DSp DSP DSP DSP DSP DsSp DSP processors
56000 56000 56000 56000 56000 56000 56000 56000
Control
1 R i vy Clock
FIFO buffers
Covariance
PE1 PE2 PE3 PE4 PES PE6 PE7 PES matrix
il
Dedicated RAM
Y Vv
Computation
PE1 PE2 PE3 PE4 PES PE6 PE7 PES of G
RAM G
matrix
Figure 4.1: Overall system architecture till computation of G
25

Ry EE NS

PE32 rES PRI

From Cholesky
Decomposition

—>

rPzs2 PEes 844

fres: T rEse

rge: r863 rEss

rEYl rers rzre

PRS2 rEa3 PEse
s

FIFO Buffers

Ll Lyl

Computation of
Eigenvalues
and Eigenvectors

RN

Power method for
DOA

N o R

Forward
Substitution

Figure 4.1: Overall system architecture for the bilinear transformation algorithm

The next stage consists of the FFT processors. In this algorithm the
computation of the angles of arrival is done in the trequency domain so the
first operation that is performed on the incoming data is the Fourier
transform. The DSP 56000 [16] chip is proposed for the calculation of the FFT
for the data from each sensor. From the specifications of the chip it has been
calculated that it can perform the 64 point FFT in about 120 ps, which is
acceptable for this algorithm. The output from the FFT processors is a 64
element vector in the frequency domain. But the components of the vector
are symmetrical and hence tor computation purposes only one side of the
spectral elements is considered. The data reduces to a vector of 33 elements
which is used to compute the covariance matrices. The architecture for the
covariance matrix attempts to keep the symmetry of using 8 processors for
each stage. A set of FIFO buffers is used between each set of processors to store
the results from the FFT operation. A clock signal as shown in the figure is
used to retrieve the data from the buffers in a synchronous mode which is

necessary for the input to the covariance matrix processors.
4.2 THE COVARIANCE MATRIX PROCESSORS

The computation of the covariance matrix at each frequency bin
essentially involves the multiplication of two 8 element vectors. These
correspond to the frequency component at each of the sensors and are
indicative of the change in the observed signal between the sensors. Figure 4.2
shows a more detailed diagram of the architecture for the computation of the
covariance matrix. As shown in Figure 4.2 this stage consists of 8 processors
each of which is used to compute one column of the covariance matrix. The

flowchart in Figure 4.3 shows the various steps involved in the calculation of

[3]

~J

— L] L L] ——— [] T T [14 L] . L] ' W

the 33 matrices. Figure 4.4 shows a more detailed diagram of the processors in

the covariance stage.

Basically the computation of the covariance matrix involves the
multiplication of a vector with its transpose resulting in a square matrix

whose

Broadcast bus

Ti Toe 1o T Lo

PEl PE2 PE3 PE4

)tr>
ﬁr‘;’

FOI'I"‘O F:OI\“'D konlro konlro

Off Chip RAM
¢‘ y y y _ Jv y y y
lComputalion of G

Figure 4.2: Architecture for the computation of covariance matrces

dimensions are the size of the vector. In this case the number of elements in
the vector is 8, which gives a 8x8 covariance matrix. This also permits the
mapping of the computation process upon an array of 8 processors, each of
which calculates one column of the resultant matrix. Each column is formed
by the product of that particular element with the whole vector. For example
the third column (which is computed by the third PE), is formed by the
product of the third element with the entire column. Hence the inputs to the

third processor will be the third element (X) and the vector (Y - Yg).

64 seginents

Initialize ali
arrays

33 Loops

!

Load new segment
in FIFO buffer

—>]

Y

¥

Load the X input
(ith element)

Load the Y input
{ Whole vector)

|

¥

Perform
multiplication

Z=XxY

'

Add to any
previously computed
corresponding column

'

Clock in next
frequency vector

I §

]

L

Average all
matrices

Pass on for
computation of G

Figure 4.3 - Flowchart for computation of covariance matrices

to
e

These elements are obtained trom the FIFO butfers in which the outnut from

the FFT processors are stored. The loading of these elements can be achieved

in parallel with a multiplexed bus which will route the data from a buffer to a

single PE (X input) and a broadcast bus which will put the data to all the

processors (Y1 - Yg inputs).

=

H ' s i & £ £
3 3 3 3 3 J
Sl lwp s [s] | %] | %] | %l x
I 1 1 1 L 1 1 L 2
Coquol
MLT MLT MLT MLT MLT MLT MLT MLT Unit
SEGMENT
COUNTER
i i i -~
ADDRESS
ADD ADD ADD ADD ADD ADD ADD .woid coINTER T
v
A t A T A Ar {\
y y y y y y y FI
DATA LATCHES
1
=
=
5 “—-
>
RAM L] » » . - L] » L 'ﬁ
33

Figure 4.4 Processing Elemernt for covariance matrix stage

As seen from Figure 4.4, once the data is latched in to the buffers inside

the PE, it is passed on to a multiplier. In the block diagram each MLT is of a

complex number multiplying unit consisting of four multipliers, one adder

and a subtractor. The two multiplier inputs are the X

value and the

20

corresponding Y value. Once the product is computed, it is passed on to an
accumulator. which adds the incoming value to one that has been computed
from the previous segment. This previous value is stored in a local or otf the

chip RAM as shown in Figure 4.4 and can be retrieved as follows.

The control unit inside the PE basically has the function of supplving
the various signals which would enable the correct data to be retrieved from
the local RAM during the arithmetic operations. An address counter which
runs from 0 to 32 will generate the address which is needed to retrieve the
proper vector from the RAM. The decoder takes the signal from the counter
and enables a particular row which contains the vector corresponding to that
frequency. The particular vector is put on the data latches from where it goes
to the adder. This completes the read cycle from the memory. Once the
addition is done, the data is now written back into the latch overwriting the
data which had been previously stored. A write cycle is executed and the
acccumulated result is written back into the same memory cells. The address
is held valid till the write operation is completed. The counter is now
incremented which takes the whole operation into the next cvcle. Once the
counter completes 33 cycles it is reset and a pulse is sent to the segment
counter which is incremented. The segment counter is set to run from 0 to 63

and is used to indicate the end of a frame.

The memory is organized into an array of 8 x 33 cells. Each cell is
capable of storing one element of the vector. The word length is such that 8
elements can be accessed in one cycle on parallel data buses. The addresses
run from 0 - 32 for the 33 vectors that are stored. Once the computations have
been performed for one frame they are averaged, and passed on for the

computation of G.

‘o
—

4.3 PROCESSOR FOR THE COMPUTATION OF G MATRIX

The computation of the G matrix reduces the 33 frequency matrices
into one single matrix. An important aspect to note is that this computation
is required to be done only once every frame, i.e. every 64 segments. The
architecture is very similar to the one used for the covariance matrix
computation except that the operations are now matrix based instead of being
vector based. This calls for a slight change in the memory requirements and
the operations in the computation. As shown in Figure 4.1 the architecture
consists of an array of 8 processors. Each processor is used to compute one

column of the resultant matrix.

The formation of the G matrix involves two matrix multiplications,
which are used to project the 33 frequency matrices into a single combined

matrix at the central frequency according to the following equation

G

T(w;) Klw;) TH(w;)

As the matrices are 8x8, the operations are mapped in an 8 processor
array as shown in Figure 4.1. Each processor computes one column of the
resultant matrix. The data routing is a bit more complex this time because the
operands are matrices which need to be loaded into each processor. To
simplify this problem the architecture is configured in such a way that only
one column needs to be unique to each processsor. In this case it would be the
ith column of the TH(z;) matrix going to the ith processing element. The rest
of the data (i.e. the T(w;) and the K(w;) matrices are broadcast
simultaneously to all the processors during the computation. The T(w;) and

the TH(w;) matrices can be precomputed, as they are independent of the

angles of arrival and are dependent only on the frequency spectrum, which is
known a priori. Hence they can be stored in an external ROM and retrieved
whenever required. The computation of a column of G at each processor can
be done by two consecutive multiplications of an 8x8 matrix with an 8x1
vector each of which results in an 8x1 column vector. The first operation is
multiplying the covariance matrix K(w;) to the ith column of the TH(w)
matrix, which gives the ith column of the K(w;) TH(z|) matrix. Next the
T(1w;) matrix is multiplied to the previous result which gives the ith column

of the G matrix at the ith processor.

A flowchart of the process of computation of the G matrix is shown in
Figure 4.5. The algorithm has been parallelized so that the processor can
execute nonsequential operations at the same time. The first operation is the
loading of the two input vectors, which are done simultaneously. The next
set of operations involve the parallel multiplication of the vector elements.
At the same time the next row of the K(w;) matrix can be loaded into the
input latch. Also from the second loop onwards the results can be
accumulated. Next the eight elements are added to give the innerproduct
which is one element of the column. This repeats for eight loops to compute

all the elements of the 8x1 column.

Similarly the second matrix multiplication is performed except that
this time the X input is the resulting column of the first multiplication and
the Y input is the row of the T(w;) matrix. This operation is repeated eight
times to compute the G matrix for the first frequency bin. The process then
runs through 33 iterations for the 33 frequencies. The values are averaged and

the final G matrix is calculated.

s
v 4

1
‘

33 Loops

Initialize arrays

=1

3

L 4

Load the Y; input

(Row of
K(w,) matrix)

Load the X input

(column of T H)
in the first loop

:
v

|

|
}

Multiply all
elements in parallel
Z,= Y, XX

Load the next row
of K(wl) matrix)

Accumulate
previous element

if any.

|

|

4

Add the 8
multiplier
outputs
8 Loops .
\ 2
Load the Y, input
(Row of

T(w,;) matrix)

Load the X input
(result from first
multiplication)
in the first loop

;
v

;
it

Multiply all
elements in parallel
Z,= szx

Load the next row
of T(wl) matrix)

Accumulate

previous element
if any.

'

|

8 Loops

Add the 8
multiplier
outputs

\ J

Average for G

Figure 4.5 Flowchan for the computation of G matrix

34

MLT
y
MLT
Accumulator
Imaginary
z MLT
b —
i Address 5
Y » = MLT - CONTROL LN ﬁ x
eg- Ih = . INTROL UNTT :
- = ELEMENT Ll% %
MLT bed COUNTER %
. | = z
ROW/ADDRESS §
.‘ MLT 4 H COUNTER =
=
ﬂ MATRIX
coraten A1
FREQUENCY
MLT COUNTER
V—Lt v
Giobal
Reset

Figure 4.6 Processing Element for the computation of G matrix

The internal block diagram of the PE used for the calculation of the G
matrix is shown in Figure 4.6. The X input is the ith column vector of
TH(w)). For the fourth processor the input would consist of the fourth
column of the TH(w;) matrix. The loading can be done in parallel, to all the
processors. The other input consists of the K(w;) and the T(w;) matrices.
The sequence of operations is shown in the flowchart and has been explained

above. The eight multipliers perform the eight complex multiplications

(s}
N

required to form the innerproduct in parallel. The results are fed through a
multiplexer to an adder which sums them up, and stores the result in the
memory array which can be retrieved for later processing. The new row for
the next loop is loaded into the data latch when the multiplications are being
performed. Once the process goes into the second frequency the adder also has
to retrieve the data from the array and add to the newly computed value. This
operation is performed by first reading the data from the RAM, adding it and

writing the result back into the same memory location.

The control unit essentially consists of four counters which are used to
keep track of various operations being performed. The first counter is the
element counter which upcounts to eight and is used to control the
innerproduct computation. It enables the latches, which load the data from
the appropriate mulltiplier in to the adder. Once the element counter counts
eight, it is reset and a pulse is sent to the row/address counter which is
incremented. The row/address counter also counts to eight and keeps track of
the row of the input matrix that is being loaded. This counter also provides
the address for the RAM to store and retrieve the data. The third counter is a
matrix counter which counts the matrix multiplications. It is a simple
inverter and specifies the first or second multiplication. This is
complemented every time the row/address counter is reset. The output of the
matrix control is used to load the appropriate matrix into the processor. The
last counter is the frequency counter which counts upto thirty three frequency
bins. The outputs from the last two counters are basically used to retrieve the
appropriate data from the buffers. Once the G values are computed for all the

frequency bins, the processor then averages the column to give the value of

36

the column of G. The whole matrix is obtained from the columns from the

eight processors.
4.4 COMPUTATION Gg,

This DOA algorithm requires the knowledge of the noise spectra in the
signal which is finally expresssed in the form of the G, matrix. The Gy matrix
can be computed similar to the G matrix except that the signal vectors are
replaced by sampled signals which do not have any wavefronts from the
objects in them. i.e. they are representative of the medium only. This
operation needs to be performed only for updating the G, matrix. As
explained in the previous section there is one operation which is performed
on the G, matrix which is not performed on the G matrix, which is the
Cholesky Decomposition. This operation is required to put the two matrices
into the standard form for further processing. The Cholesky decomposition
can be carried out effectively offline from the main processing stream, and the
result fed back online whenever the need arises. The architecture for this

operation is explained in Section 4.6.
4.5 FORWARD SUBSTITUTION

As explained in the previous section the G matrix needs to be
decomposed into a standard form. This transformation is accomplished by
performing two forward substitution operations as explained in Section 3.4.
The steps in the forward substitution are more complex than the previous
stages because the operation involves a series of multiply and accumulate
steps to calculate each element. Hence to reduce the complexity of the PEs, a
systolic architecture is adopted for this stage. Figure 4.7 shows a completely

parallel and pipelined architecture for this operation.

f s
~J

The stage consists of an array of 8x8 processors each of which computes

one element in the matrix. A detailed figure of a typical processing

lx

lvx

ix

ix

lx

lx

b

R0 1 .»mq» e e
NN
S 0 D 0 B 0
LI TIT3 I
D 3 e 1
o e e o e
g 0 0 0 0
e e o e
e
S e e
g 0 L0 0 0 0 L0 il Y
o e o
-ﬂ PEBIP PESB2 "" PES83 HT’E&‘P PESS H PES6 PES7 "'-?‘ Pessr

Figure 4.7 Fully pipelined and parallel architecture for the Forward Substitution operation

cell is shown in Figure 4.8. The Y input in this case is the particular column of
the lower triangular matrix L and the X input is the corresponding element

from the G matrix. As before the X input is unique to the PE while the Y

input is broadcast to all the PEs in that column. All the outputs are

transmitted downwards for further processing. In the first cycle the first row

X
Yy
Element g .
of G mn > x‘i.m < x%&n ————
mk | accumulate | | accumulate |
Row 2 ¥ ¢
of subtract] l add]
L Y A 4 L 7
9 DIVIDE DIVIDE

— Ilmm
Xr
mn

Figure 4.8 Processing Element used in the Forward Substitution stage

elements are computed. The result is broadcast to all the processors directly
beneath it. From the second cycle onwards the processsors beneath the row of
that particular operation, will be active while those which have already
calculated their corresonding elements are inactive. The whole process of
calculation of the result takes eight cycles. After it is done, the next set of data

is loaded to compute H for the standardization.
4.6 CHOLESKY DECOMPOSITION

The flowchart for the Cholesky decomposition shows the various

sequence of steps which the processors have to perform. Figure 4.9 shows the

19

array which is used for Cholesky decomposition of the G, matrix. The
triangular arrav is loaded into the processors with each element going to its
corresponding processor. The processors along the diagonal are different from

the processors below it as they have ditferent computations to pertorm. The

computation

—| P11
! ¥
—3 | P21 —)| P22
I 3 ¥
—L) Pl pi2 =Py P23
v v v
‘4 P-fl —4 sz =t P43 —-)[P44
R T A e
—] psi —)‘ P52 =P ps3 —ﬂ ps4 =P pss
VR T T T
ﬁ) P61 —{Paz ! P63 —)[PM —-ﬂ P6s —)l P66
| ! ¥
—3| P71 F’I P71 =P Pi’3 "” P74 =P P?S F‘){No =31 P77
| e A T R
‘", PRI —)[P82 =P Ps3 {PM P p3s —ﬁ Pss =P P87 -{pss

Figure 4.9Architecture for Cholesky decomposition

process takes eight cycles during each of which one column of the resultant L

matrix 15 computed.

The initial inputs are the individual elements of the matrix. Unlike
the previous processes, the input to the processors in the Cholesky
decomposition change during every cycle depending upon the number of the

column that is

Multiplier

—
RAM -+ l

Figure 4.10 : Processing Element for Cholesky Decomposition

being computed.The X input to a PE will be the above diagonal elements of
the corresponding column while the Y inputs are the corresponding elements
from the same row. The results are accumulated after every multiplication.
For example when the sixth row is being computed, there will be five
multiplications and additions before the final subtraction and division. The
accumulated value is subtracted from the original element value and then
divided by the column's diagonal element. The equation for computing the

subdiagonal element is

41

i-1

aki - Y Aijak;

=1

U = &l

and the diagonal elements are computed by the equation

kel
A=\ , akk - DAk
=1

Hence the PEs on the diagonal have a slightly different function to

perform than the PEs below the diagonal and hence are a little different.

Once the 33 spectral matrices have been combined at a single frequency
then the computation can be carried out by the Householder/QR

transformations and the Power method.
4.6 PROCESSOR WORDSIZE VERIFICATION

One major obstacle in the design of the processor is the estimation of
the number of bits that a complex number needs to be represented. The
important consideration is that the algorithm must resolve the number of
sources without the loss of too.much resolution. For this purpose the
algorithm was simulated by assuming eight bits for the real and imaginary
parts. During the simulation the sensor signals were quantized to 8 bit
numbers and the procedure was carried out. The power method estimated the
angles of arrival with the required accuracy and resolution. The plots for the
DOA for the quantized and unquantized methods are shown in Figure 4.11. It
can be seen that the scaling down of the signal mainly has the effect of
reducing the absolute value of the DOA power estimation but does not atfect

the ability of the algorithm to discriminate between sources.

i | l T

L
J\Ux

DOA for 8 bit quantized signal

DOA for unquantized signal

Figure 4.11 : Direction of Arrival Estimation using quantized and unquantized data

PN
‘s

CHAPTER 5
A combined covariance matrix processor
51 INTRODUCTION

A common step in most algorithms used for the estimation of DOA is
the computation of the covariance matrix from the incoming signals. This 1s
generally the first preprocessing step which generates a correlation function
from the data that is collected at the sensors. From the VLSI implt mentation
point of view it is very appealing to design a combined covariance matrix
processor which will be programmable and can be used for both narrowband
and broadband algorithms. Such a combined processor has the advantage of

being very cost effective and opens avenues to design a configurable system.

In this work three such algorithms which are very appropriate for the
development of a dedicated svstem are considered and a combined covariance
matrix processor is developed for them. The design of such a processor is
possible because the basic computations required in this stage are complex
multiplications, accumulations and averaging, which are common to the
three mett.uds considered in this work. One algorithm is the bilinear
transformation algorithm which has been described in the previous chapters.
The other two are the narrowband MUSIC algorithm [17] and a broadband
BASS-ALE method [18]. The processor is designed to be compatible with eight
sensors and eight processor system described for the bilinear transformation
method and shown in Figure 4.2. Eight processors in the system are placed on
a processing board with each processor having its dedicated memory as

shown in Figure 5.1. In this work the

44

Broadcast Bus

-

a 3 3 2 2 } b 3
Processor Processor Processor Processor Processor Prucessor Processur Processor
1 2 3 3 < o - X

1 3 T 3 1 ¢+ 13) 4 1 4 1

|

Memory Memaory Memory Memory Memory Memory Memaory Memary

Figure 5.1 : Processing board for the computation of covariance matrix

design and implementation of an ASIC chip for the processor is carried out.
The processing board can be completed by using commercially available
components for the memories. Though the above two algorithms are not
discussed in detail the procedure involved in generating the covariance

matrices is explained.
52 COVARIANCE MATRIX COMPUTATION FOR MUSIC ALGORITHM

In the case of the narrowband MUSIC algorithm the covariance matrix
generation is the first step after the sensor stage. To form one matrix we need
a vector of 8 elements from the sensors which are sampled simultaneously.
The covariance matrix is therefore an 8 X 8 matrix formed similar to the
bilinear transformation case. The matrix can be computed by the processing
board shown in Figure 5.1. Each processor will compute one column of the
matrix. To do this each processor has to multiply the 8 element signal vector
by a single scalar which is the element in the vector corresponding to that
particular processor. For example the sixth processor in the array will
multiply the vector by the sixth element in it. The initial data flow
requirements can thus be stated as follows. The complete vector is broadcast

to all the processors. The scalar element corresponding to each processor 1s

45

individually routed to it. For the narrowband case for each computation of
the DOA a total of 4096 such vector samples are collected. The covariance
matrix is computed tor each vector and the final matrix is obtained after

taking the the average of 4096 computations

The flow chart for the case of the MUSIC algorithm is shown in the
Figure 5.2. First of all the whole system is reset using a global reset signal
which clears all memory arrays and latches and initializes them to zero. The
next step is to enable the frame counter (k) which counts the number of
frames. For each new frame the PE needs to load the incoming sampled data.
The control of the loading operation is handled by an external 1--d counter
(1) which synchronizes the loading of the data in all the processors. The
loading operation is done over eight cycles during which one element is
loaded for every cycle. In the first cycle the first element is loaded into the Y(1)
latch of all processors and the X latch of the first processor. The latches in the
processors are enabled by a decoder which is addressed by the 3 bit load

counter. Once the loading is complete the arithmetic operations are started.

The next operation is the enabling of the element counter which will
count eight elements of the resultant covariance matrix. To complete the
arithmetic operation to generate the covariance matrix for complex numbers,
it is necessary to perform four multiplications, an addition and a subtraction
for each element. Apart from this there is an accumulation operation which
is used to average the values over 4096 frames. Once the element counter is
started, the appropriate data latch is enabled sending the output to the
multiplier stage. The real and the imaginary parts of the output are generated

in parallel by performing four real number multiplications.

46

Initialize all arrays

and counters

-

Start / count
frame counter (k)

o

—

Increment load counter (/;)

> 3
Load ith component Load scalar in X latch
of vector in Y(i) latch of the ith processor
¥ 3
No
5,27
o Yes
v
Start / count

element counter (¢)

Enable address latch
for reading
- 1 S
Two simultaneous Two simultaneous Retrieve stored
multiplications multiplications value from memory
I JL using i as address.
Subtract for Add for Disable address
real_pan imaginary part latch
Shift right Shift right
6 bits 6 bits
l :L i S
Accumulate Accumulate

©

Fin
~3

-

Enable address latch
for writing

i

Write result back

to memory
No
i27
Yes
Reset frequency counter and

increment frame counter (k)

No

Yes

Global reset
GR =0

Figure 5.2 : Flowchart of operations performed to compute covariance
matrix for the narrowband MUSIC algorithm.

48

This is done by the four eight bit multipliers in the arithmetic unit. To obtain
the imaginary part, one product is subtracted from the other. Similarly the
real part is obtained by adding the corresponding products. A memory read
operation is performed in parallel which will read the previously computed

result and is added to the newly computed element.

Overall 4096 such frames are accumulated. The sensor output is
quantized into 8 bit real and imaginary parts and hence the word size becomes
16 bits after the multiplier stage. After the final accumulation the data
becomes 28 (16+12) bits. This increases the chip area, data bus width and the
memory requirements. To alleviate this problem the result is pre-shifted

before accumulation by 6 bits.

Once the accumulation is complete the address latch is enabled again
and the result is written back to the memory. This loop is performed 8 times
as shown in the flowchart. Then the frame counter is incremented and the
operations are performed 4096 times. Finally the global reset is enabled which

resets all counters and memory arrays.

53 COVARIANCE MATRIX COMPUTATION FOR BROADBAND
BASS-ALE ALGORITHM

The BASS-ALE method is a broadband algorithm which uses the
eigenstructure of a temporal covariance matrix and broadband source models
to estimate the DOA. Like the MUSIC algorithm the input vectors to the
covariance stage are samples in the time domain. However for the B/'\SS-ALE
method operating with a system of eight sensors the input vector is a time
delayed set of 64 samples. Eight samples are obtained from each sensor taken

after a speccific time delay. They are then stored in a delay array before the

49

covariance processor stage, which gives a 64 element vector. The
multiplication of a 64 element with its Hermetian vields a 64x64 matrix. A
parailel and pipelined architecture for this procedure will consist of an array
of 64 processors with each one computing one column of the resultant
matrix. A new scheme has been proposed [18] which allows the computation
of the covariance matrix using an array of eight processors. An eight
processor architecture is adopted as it is similar to the one proposed for the

narrowband MUSIC and bilinear transformation algorithms.

The flowchalft for the computation of the covariance matrix is shown
in Figure 5.3. The arithmetic operations are exactly similar to the ones
explained above. The major difference lies in the controlling of the number
of loops and the loading of the input latches. As before the processor has 8
latches for the Y input which will recieve the broadcast vector. The X input is
distinctive and is given only to one specific PE. As shown in the flowchart
the control unit performs four nested loops for the BASS-ALE algorithm.
The 64X64 matrix is split into 8 sub matrices each of which is 64X8 in
dimension with the ith processor computing the ith submatrix. For example
the 4th processor will compute the 4th submatrix which consists of the
columns 25-32 in the covariance matrix. To simplify the control unit these
submatrices are split up into eight Sx8 micromatrices. For each new column
of the micromatrix the data has to be loaded into the PE. As before this is

handled by an external load counter. The (8k+1) th component of the vector is

50

[nitialize all arrays
and counters

1

Start / count
segment counter (71)

>

X

Start / count
subvector counter (k)

Start / count
column counter (j)

4

Increment load counter (/,)

4

M

*

Load (8k + ijth component
of vector in Y latch

Load (8 + j)th scalarin X
latch of the ith processor

-

¥

Reset load counter and
Start element counter (i)

Enable address latich
for reading
i 1 |
Two simultaneous Two simultaneous Retrieve stored
multiplications multiplications value from memory
L ;l using &ji as address,
Subtract for Add for Disable address
i mMagi latch
real part imaginary part

1)
—

Shitt right Shift right
6 bits 6 bits
l ——
Accumulate Accumulate

Enable address latch
for writing
Write result back
10 memory

No
i>7
Yes

Reset element counter and

increment column counter ({)

No
Jj=27
Yes

Re-et column counter and
increment subvector counter (j)

No
< k27
Yes

Reset subvector counter and
increment segment counter (7)

No
n 2> 511
Yes

Global reset GR =0

Figure 5.3 : Flowchart of operations performed to compute covariance
matrix for the BASS ALE method.

52

loaded to all the Y latches and the (8i+/)th scalar for that particular submatrix
is loaded in the X latch. The arithmetic operations are the same as before
with four multiplications, an addition and a subtraction. Simultaneously, the
word is read in from the memory using &ji of the counters as the address. The
accumulating operation is then carried out and the result written back to the
memory. Once the 8 elements of the column are calculated the processor
computes the rest of the micromatrix and then each segment to finish one
iteration of computations. The matrix is then accumulated over 512 loops
and finally averaged, the global reset signal is enabled and the matrix is passed
on for the computation of eigenvectors. The calculation of the covariance
matrix for the BASS-ALE algorithms involves 64 times the number of
computational operations when compared to the previous case. Hence to
complete one full iteration the processor takes more time and to match the
processor speed with the sensor speed a delay buffer before the processor stage

is suggested.

54 COVARIANCE MATRIX MULTIPLICATION FOR BILINEAR
TRANSFORMATION ALGORITHM

The computation of the covariance matrix for the bilinear
transformation method has been explained in the previous chapters. The
processor outlined previously has a completely parallel and pipelined
architecture but has the disadvantage of requiring a larger area and hence is
not very suitable for single chip implementation. To reduce the chip size the
number of complex multiplying units is reduced to one and another counter

is added in the control unit. This element

53

[nitialize all arrays
and counters

—

Start / count
segment counter (k)

Start / count
frequency counter (j)

Increment load counter (I,)

Load scalar in X latch
of the ith processor

000

J
X 3
Load ith component
of vector in Y latch
-~ »
No
1,27
> Yes
!

Reset load counter and

Start element counter (i)

Enable address latch
for reading

L

s

y

Two simultaneous

Two simultaneous

Retrieve stored

multiplications multiplications
Subtract for Add for
real part imaginary pén

value from memory
using ji as address.
Disable address

®

©

565

Shift right Shift right

6 bits 6 bits
L l —k —
Accumulate Accun.ulate

L

I

Enable address latch
for writing
Write result back
to memory

Yes

Reset element counter and
increment frequency counter (i)

Jj 232
Yes

Reset frequency counter and

increment segment counter (j)

k > 63
Yes

Global reset
GR =0

Figure 5.4 : Flowchart of operations performed to compute covariance

matrix for the bilinear transform method.

M
t I

B N R S a s

counter controls the computation of the individual elements of the column
which are now computed sequentially instead of parallelly. This
configuration can be easily mapped onto a genralized architecture for
covariance matrix computation. The flow chart for the bilinear
transformation operation is shown in Figure 5.4. The computation of the
covariance matrix for this algorithm is done in the frequency domain over a
range of 33 frequencies. One covariance matrix is generated at each frequency
bin and then averaged over 64 frames. The arithmetic operations are simlilar
to previously described operations, but in this case as the averaging is done
over only 64 frames the initial preshift by 6 bits is enough, and the shifting

out after accumulation is not required.

A combined flowchart for the computation of the covariance matrix for
all three algorithms is shown in Figure 5.5. A two bit mode select signal is
used to select the desired algorithm. The control is then transferred to the
individual control units which are driven by the system clock. The system
can be reset at any time by pulling up the global reset (GR) signal which is
usually generated by the control units after the completion of one frame of

operations.
5.5 PROCESSOR ARCHITECTURE

A block diagram of the combined covariance matrix processor is shown
in Figure 5.6. The architecture basically consists of three parts:

1. The input loading stage

2. The arithmetic unit

3. The control units

[
tr,
® 9 0@ QO el
N I B *wn G “__._ v
et JFLITRINITS [[EITRTLTY CCUPPF SP(] | RGN
[T YN . . uw
coppr e fms Q

Ay

EIRIERIIT TR I LAY
" it L0t e 0y auenruplapng suwenesndnma
Lot g e g ogerpdnmn suenr syl

Panns A1y

EL L NIRRT

[RUNIELE T E)

SO NI IH NS O | SOOI o |
SO RPIMunc cn PR T 1w {mwndran (e a8
9 * a T N 3 2 10) e nyng Y
frpedt 10y — 4
ET L SYRTY i . -
T - YT S AR STy wom "qy G 9
GNP SRAPPT st H e Sl Wi g iy nyy
4 <RY Pl d
{11 ROy WANAS IS samppe se 1 Furery —
1) BDUNeS MU UM P smn proy 163y Kponiom wsesy X.l suormyd nmut cutwondnmig
AP IO (00 | IRIY PAICTS Janhoy OIS O | moA IS o |
SR
L3N é .ﬁ _
.
N 1 °N Fumpwar s03
, TR SEAUPPR 3Qein)
wmsawad (e

10 N Y 1 PPas prev |

{1 IU™
' 2L
(£} J3TUNDD PPRO] REAL MY tmoy/1mg
U7 I3RS pray s
3 3 - v
> =
t N 1omes unmgos
€ 1avumens Limonbarg Wnes J g
LUGWTALL rwxpwd i gy po PR I AR P
& _ huc
£ ¥} 3RUNOS JOPIIAgNE g o
€y} mmes pandas o { e
nO S £ 1w1g

H €'Y 130mon peo] REua g
(#) 100y wdx l.r
—--lav\—.—.ﬂ_w 1 ¥} PIUMaOs Jumwsy
nme 1 Mg

‘T

SPRMON PR
sAv e | FqEnNG

2

Ly ey
PUPEWOITN QU

1B i
séetw g anpig

S14M0> fee
skeare \f Jnvenn]

AL} [OBHO Y
TP RO

1} osne)
I IV-SSVH 3y

10 = JGONW

01 = JAY (LU (SN]

e papse
oM

10s52001d XLIPW ADULLIPAOD PIAUIGUIOD YY)

Aq pawtopiad suonesado ayy 1oy ueYIMor - ' andiy

0= 4O 1220 paolry

€ 1) 10meY uRae Juswamn

PO IIRMOD INIAQAR 1 7Y

(= M3} 12X Pgop)
sap
[
N

[IRE LU OSSR B TETET At 1 D iAune Y JOIISAQRR IUSIEILUWT

TR IR AR TR Y PAR IRIOS VWINJOO 126 7%

T OO0 WA
CH Iamos ANuanhal| usmassn
PUT S RMCD [OWHS 196 7Y
PP IO JURUI 1Y
34
AV’
s~ S
N
LEAECTRE] Axrume o
WP Al UM R INEN UM

e fog

Yrmey Sogye g

Aemam oy ArpIno Wy IR
i T 1 1
11w 3 yed
urd wuvdvun e 2y d Amurdwun red rar
2 10
10} 17 4qN | 30 10 O

o= D
133 pgotD)

sax

Se0t <

oN

O FLIRUDOY SWRT] WA

pi 10mkn Axpanbay ks

[F5Y

Aot o1

TG 1NN AU

. 3

Iimuew

YARY SCpOe Aqrin

Y LATCHES

[nput loading Unit
i 1

X LATCH

< - r I) S—— >
LT P T PO T PCTPC O L e
LOAD j=——=
Ny x x & CONTROL
Inna
---------------------- '-'"-----}-‘---~---'¢~~~-----}----------- -—-----------~-—----~----; (,-:i\k
L 7 * ¥ * ¥ x ¥ :
MULTIPLIER (1) MULTIPLIER 2) MULTIPLIER (3 MULTIPLIER 4 '
| PRESHIFT | | PRESHIFT | PRESHIFT PRESHIFT :
SUBTRACTOR ADDER F"’
2 N
ARITH%WETIC From memor = Memen
UNIT : = 1-2-5“-)
y y o :
ACCUMULATOR ACCUMULATOR z .
MG :
1| MODE L 1 :
MLbECODE DEMUX | DEMUX ;
------ bl oo w -]
Input_Clock
SAEREREE Mode 3 77" "" [o Soaei T T j IR Mede' I 77|
i N +
[' ' 1
[- E—| | B |
' ¢ i) +
: ' " X
'] t '
]] *]
e Element Counter (0-7) ! Element Counter (0-7) ;: _q{ Element Counter (0—7‘* :
' T * I ‘: p = .« '
[' L t
' ! t . '
: 2 ; e [Zo |
' o , Q7 Ny * =l
t o f R 1 ,i% o |: = :: st .
: [Frequency Counter 2% ' Frame Counter 5« i - Z 4
: (0-32) p ' (0-4095) = :: —q Column Counter (0-7) < :
:] - " p - !
& ot L N
1 s ! uy '
' [] L 1
t ! H i
[1 : ty)
! Fre C 1 ! Hy :
o rm:?]-();l:n e - " Micromatrix ;
' - o Counter (0-7) X
: ! ; :
t [I 1
' [} Ay '
' o GLOBAL " 3
: GLOBAL e RESET " -
X RESET : 3 NI RS oA N J
[T SIS e L . T I e I
Bilinear Transformation Narrowband MUSIC BASS-ALE
Control Unit Controt Unit Control Unit
Figure 5.6: Block diagram of combined covariance matrix processor 59

Figure 5.7 shows the mode select unit that is used to select the desired
algorithm. The input loading stage consists of eight input latches for the Y
vector and one for the X scalar and a load control unit which latches on the
data at the appropriate clock pulse. Figure 5.8 shows the load control unit. The
unit has two three bit counters and two 3 to 8 decoders. The latch counter is
used to count the clock pulses and the decoder selects the appropriate latch
according to the clock. One counter is used to latch the input data and is
driven by the load clock. As shown in the flowcharts the load clock is received
when the loading operation takes place. Once the data for one particular cycle
is latched in, the load clock is’ disabled and the input clock which
synchronizes the arithmetic operations is enabled. The input clock is used to
drive the enable counter and the enable decoder which enables the
appropriate buffer. The data from the latch is then placed on the internal data
bus which is connected to the multipliers. As all the latches are connected to
the same internal bus, a tristate buffer is used after the latch to prevent data
corruption. The arithmetic unit has four multipliers, an adder, a subtractor
and two accumulators. The control unit has three separate control modules
for three algorithms. The functions and operation of these units are discussed
in detail in the next chapter.

In the next section the behavioral simulation of the processor using
VHDL is considered. The architeciure is verified at the module level and all

the architectural considerations were taken care of.
5.5.1 Powerview 5.1

Powerview 5.1, from Viewlogic is a CAD package [19] that has the
capability of simulating analog/digital architectures from the logic gate level

to the module level. It offers a wide variety of choices to the designer who can

60

i > Mode 3
: Mode 2
i > Mode 1

M1 DO_J
_MD__LDO_

Figure 5.7 : Schematic of mode decode unit

External Broadcast Bus

S 1 >
LATCH o)
D
16 BIT LATCH{— @‘ o5 = Load
: Q ™= lock
] 32 33
E=NE
ENABLE Do
TRISTAT ENCINE R U e
BUFFER - c2i W ol Input
2Blge —{ = | Clock
Di] <@ < < p———
- om— 1] -
D3 Z 5 L4 Z o
PO Bl MO
07
Internal Data Bus to multipliers >

Figure 5.8 : Schematic of load control unit

o

choose from a standard cell library or can construct his own from the basic
logic gates. The package also supports a variety of tools ranging trom Hspice.

PCB design, FPGA analysis and VHDL.

To perform a behavioral simulation of the proposed architecture,
VHDL code was written for all the basic modules. Appendix A contains all the
VHDL code for the various modules used in the architecture. The VHDL file
was simulated using Viewsim, the simulation tool available on Powerview.
The VHDL modules were converted into schematic symbols and called as
components inside Viewdraw, Powerview's schematic editor. The modules
were then connected together to torm the processor model. The architecture
was once again simulated using Viewsim and the results were plotted using

Viewtrace.
5.5.2 Behavioral Simulation of the Architecture

The first step in the behavioral simulation was to write VHDL code for
all the basic modules in the processor. The processor was then constructed
from them. Figure 5.9 shows the Viewdraw schematic of the input loading
block. The figure shows the latches which form the input block and the load
control unit. The top set of latches in the figure is the Y vector latch and the

separate one is the X latch. The load control unit is shown at the top.

Figure 5.10 shows the Viewdraw schematic of the control unit for the
narrowband MUSIC algorithm. The three bit element counter is connected
through an AND gate to the clock input of the twelve bit frame counter. The
output of the frame counter is given to a 12 bit AND block which generates

the global reset signal. The address latch is connected to outputs ot the

clement counter. [t is enabled when both the control unit and the counter is

ST A .
LOUYEO-T]

S R

Lautce- Ty

LOuUTIG T 1

LAUTI . 12

LrRpre T LOuTLG 7 I
"‘FIVQL i

CpRyeesn? tosva-ry ST RR S
Loutto- Ty

Lautca- 7

wmurta

LAST'ER S}

IXtg-r7y
rauwrea:r)
!

Ficure 5.9 : Viewdraw Schematic of input loading block

.
3

IO OO UITEOR[e)G PHCGASLLITN [0 JCLNIS SEIPAVIA

0k

LD
SN

']

¢ i

3 n

I

t -4

LUyt gy

T T L

Frgure > 11 Viewsum resuits tor stmutstion ot narrownanag MUSIC control uint

enabled. Figure 5.11 shows the Viewsim results of the simulation of the
control unut. It can be seen that the counters generate the required signals
according to the clock input. NC10-NC12 are the outputs of the element
counter and ADLAT is the input clock. ADO-AD?2 are the address bits that are

obtained at the output of the address latch.

Figure 5.12 shows the Viewdraw schematic of the control unit for the
broadband BASS-ALE algorithm. The three bit element counter is connected
through an AND gate to the clock input of the three bit column counter
which in turn is similarlv connected to the input of the micromatrix counter.
The output of the micromatrix counter is given to a 3 input AND gate which
generates the global reset signal. The outputs of all the three counters are
stored in the address latch. Figure 5.13 shows the Viewsim results of the
simulation of the control unit. The counter outputs are BC10-BC12 (element
counter), BC20-BC22 (column counter) and BC30-BC32 (micromatrix counter).

ADOUTO0-ADOUT? are the address bits that are generated by the control unit.

Figure 5.14 shows the Viewdraw schematic of the control unit for the
bilinear transformation algorithm. The three bit element counter is
connected through an AND gate to the clock input of the six bit frequency
counter. The output of the frame counter is given to a logic block which
generates a reset signal when the input bits are 100000(32). This simple logic
bolck consists of a NOR gate with an inverter attached to the MSB input. The
output of this logic gate is used to reset the frequency counter and acts as a
clock to the six bit frame counter whose output generates the global reset
signal. The outputs of the element counter and the frequency counter are
connected to the address latch. Figure 5.15 shows tne Viewsim results of the

simulation ot the control unit. The counter outputs are BLIU-BU L2 (element

]

0)
vy w1

ey —

(AN

L13]) e e e e et 1n e

WO | PV -SSV 0T TN JOIUON JO DTN DS MUIPMOA - e amdy

N i 0D

1943
3 v w1l
) : :

s Q) 3
w7) bl
J b

I— i it

1
1
‘

P - -7

PREE]

Figure 5.13 :Viewsim simulation results of BASS-ALE control unit

ON

TN [ONUO Y HOTUTLEOISUELL TPOTI{IE O MPUIIL MUIPMATA

E1g i

| S

f

4

Figure .15 : Viewsim results of the bilinear control unit

70

counter) and BC20-BC25 (trequency counter). ADOUT0-ADOUT?9 are address

bits that are gencrated by the control unit.

The complete processor was then connected using Viewdraw. The
schematic of the complete processor is shown in Figure 5.16. The data from
the input latches is fed into ti e arithmetic unit which computes the complex
number multiplication and gives the result to the accumulator. The other
input of the accumulator is from the RAM. The memory result of the
previous accumulation is read in using the address supplied from the address
bus. Once the complete cycle of operations are complete the control unit
generates the global reset signal which is used to place the outéut of the
accumulator on the processor out pins. The Viewsim results of the processor
simulation are shown in Figure 5.17. RA1, RA2, IA1, IA2 are the four inputs
given to the multipliers on each clock pulse and ROUT and IOUT are the
outputs of {he processor. Consider the case when the inputs are 01, 02, FC and
FD. The input vectors are 1 +iFC (a+ic) and 2 +iFD (b+id). The outputs of the

four multipliers will be:

ab=1x2 =2
cd = FC x FD = F90C
bc=2xFC=1F8
ad=1xFD =FD
The real and imaginary outputs ROUT and IOUT will therefore be:
real out = ab +cd =2 + F90C =F90E
imaginary out = bc-ad =1F8-FD =FB

The processor architecture is hence verified.

71

ossoord NTyra aouerieAc) pamguue Y jo osnewayag fraag dop seapasary oy ooy

e SRR D FREA]

H30O¥ ..

U

RUA AT

[NERET)

CHAPTER 6

VLSI Implementation

6.1 INTRODUCTION

The VLSI implementation of the processor described in the previous
chapter involves a detailed design of the individual modules and transistor
level optimization to provide a chip which can perform the required
operatiots in the required time frame. During the VLSI design various
considerations such as the selection of multiplier and adder architectures and
number representation were taken into account, and the chip design was

carried out accordingly.

The VLSI simulation and implementation was carried out using
Mentor Graphics Generator Development Tools 5.3. The GDT tools were
used to perform the transistor and logic level simulation on the chip and
conduct a timing analysis. The layout of the chip was generated and verified

using the AutoCells feature in GDT.
6.2 GENERATOR DEVELOPMENT TOOLS

The implementation and simulation of the combined covariance
matrix processor has been done using Mentor Graphics GDT on the Sun
Sparcstations. In this section the various GDT tools used to simulate and lay

out the ASIC are described.

6.2.1 GDT Lxcells - generation of basic gates

The first objective in constructing and simulating the processor on
GDT is to generate basic cells and their layouts. This is done by using the
Lxcells Utility [20]. Lxcells provides a Cell Data File (CDF) which is a flexible
database that contains a cell technology library, default vaiues for generators
and cell descriptions. This information is used by the cell generators in the
Lxcells to generate the behavioral models and layouts of the basic cells. The
technology used for this particular process is the 0.8u CMOS technologyv
available through MOSIS.

The basic gates were first generated using cell generators available in
Lxcells. The transistor sizes were optimized and the layout was created for the
gates. A netlist for the cells was generated and icons were defined so that the

cells could be used in Led.
6.2.2 GDT Led - Schematic creation

Led is the graphics editor available on GDT which supports layout and
schematic creation[21]. It was used to create the schematic of the processor
inside GDT. The basic gates were used to form bigger modules such as flip
flops, latches and full adders which were then used to form the larger
arithmetic and control units. Netlists for various modules were created and

simulated using Lsim.
6.2.3 GDT Lsim - Simulations

Lsim is a mixed-signal multi-level simulation tool available on GDT.

This means that Lsim has the capability to incorporate M language and netlist

descriptions at any hierarchical level. It also allows the user to simulate the
model using switch, logic and adept modes on different parts simultaneously.
It also provides extensive debugging tools to help in error checking and

correction.

The various modules were simulated using both the switch and adept
modes in Lsim. The switch mode gives the switching level simulation of all
gates in the circuit and can be used initially to verify the accuracy of the circuit
that has been created. The input to Lsim is the netlist file that is created from
the schematic modules inside Led. The modules were then simulated in the
adept mode which gives a more detailed timing analysis of all the transistor
inside the modules. The adept simulation gives idea of the speed of the

circuit which was then optimized to fit the timing requirements.
6.2.4 GDT AutoCells - layout generation, compaction and routing

AutoCells is an automatic routing tool for laying out circuits. It can
perform fully automatic and interactive layout and control the aspect ratio of
the layout to fit the block into the chip's floorplan. The input to Autocells
consists of a netlist, the basic ceil blocks and the control parameters. The basic
cells were generated by the Lxcells layout generators for the basic gates that

were created to be used in the schematic.

6.3 PROCESSOR IMPLEMENTATION

A Led schematic of the combined covariance processor is shown in
Figure 6.1 which corresponds to the block diagram shown in Figure 5.6. As
described in Section 5.5 the processor can be basically separated into three
functional parts. The detailed design and operation of these three parts are

described below.
6.3.1 The input loading stage.

The input stage consists of 9 sixteen bit latches and a load control unit.
A Led schematic of the input stage is shown in Figure 6.2. Eight of the input
latches are used to hold the Y vector and the ninth one is loaded with the X
scalar. The sixteen bit latch as shown in Figure 6.3 contains 8 bits for the real
part and 8 bits for the imaginary part. The load control unit is shown in
Figure 6.4. It can either be outside the chip in which case it will drive the
input stages of all eight processors in the architecture or it can be placed inside
the processor and driven by an external clock. In the implementation of this
processor the load control unit has been placed inside the cell. The load
control unit consists of two three bit counters which provide the latch address
and two decoders which interpret the address and enable the appropriate latch
signal. The Led schematic of the 3x8 decoder used in the control unit is shown
in Figure 6.5. The load control provides 2 control signals. One is the latch
control signal which dictates which latch is to be loaded at the particular time
from the external broadcast bus. The other is the enable control which

provides the signal to place the latch contents onto the processor data

77

2: Point: (B,8) processor S

INPUT
JaTCHESE
o)
=
8.
I
i MY g N ULTIPLFER[MULTIPLIER "2
8ga0103) (50030103 [maszaanns] B 20333236) . T U et
I | 3 - S
o wo 30 C‘Q 208
L za g% o ar
2z &5 ' 25 .
o0 [Z0 QO T
40DER sgs:iacroa : ‘ T
| ‘ K
£§ 200600 iy —— i |
=] |] = i
& 5 ‘
.
: :
[o WRITE
srayy mmn KA
Memary
J address
il Buses
v doee o2 0 0L
|ACCUMULATOR ACCUMUL ATOR
youcE.0.9005:; 000 oiic aooA oo ,_-“»v-rr%
Processon Processor
Out Out Memory

Figure 6.1 : Led Schematic of the combined covariance matrix processor

I NN NN I I N I W BE R EE S I BN Gm G E ' .
>
7

ageys Guipeoy indut Jo anrways pay : 79 Andyy

sga1]di1anw 03 - andanQg B3ieQ A
J“]

sJyatdiaing
031 ®3eQ X

=

10J3u0)
Guipro ®B3kQ
. L

- -«
—F :
sng andul eBae(

WG peOll® (959°Shpl) :juiod

80

adeis indut ayy w1 pasn yoie] 11q 91 JO dNRWAYS : €9 3Ny

S1LNdlnNO HOLYT]

ano Raeui1bews ANQ 1esy

io.ﬁ““..r_ i.'io‘i.‘rq
HE

89—
=y = B3
- PFEE W » [ol o ol G N

ul " Raeui1bew] Ul 1es8y

S1NdANI HOL1YT]

MS 4Yojel (A91°AzZZ) :juiod

2: TEXT for ES rel®(13,-42) W=6 R99 (112,-114)

LATCH m
COUNTER LATDECE

LATCNTE

9 86 99 6§89 6§ 8
Decoder Outputs

=]
LATCLK
=

LATCH
COUNTER

ENARBLE

COUNTER NBLDECE

-
ENBLCNTE —8

"-‘B
ENBLCLK ENQBLE

DECODER

P 8§65 ¥ 98 8§

Decoder Outputs

Figure 6.4 : Led Schematic of control unit for input loading operation

o0

DECODER_OUTPUTS

Figure 6.5 : Led Schematic of 3 to 8 decoder used in the load control circuitry

bus. As shown in Figure 6.2 the output of the latches is fed into the arithmetic

unit.
6.3.2 The arithmetic unit.

The arithmetic unit has the basic function of performing a complex
multiplication and accumulation. It consists of four multiplier units, an
adder, a subtractor and two accumulators. The multiplier designed for the
chip has a systolic array architecture{24] as shown in Figure 6.6. The multiplier
is a signed binary multiplier with a 7x7 array of full adders to compute the
partial products. It was decided to use an array architecture for the multiplier
because for an 8 bit configuration the array architecture performs much better
the other structures{25]. The final stage is a ripple adder which sums up the
partial products. The sign bit is computed by a XOR gate which is fed by the

sign bits of the two operands.

The input to the arithmetic unit is assumed to be signed binary because
this representation is the most natural form of representing binary numbers
especially at the output of a sensor array. But addition and subtraction of
binary numbers can be carried out much more easily if negative numbers are
in the two's complement forms. After multiplying two signed binary
numbers the actual product is divided by 64 by dropping the six least
significant bits. Hence the output of a 8 bit signed binary multiplier is a 9 bit
result. To convert the output of the multiplier to the two's complement form
an adder circuitry is added at the end of the multiplier. A demultiplexor is
used to separate the positive and negative numbers. The demultiplexor is
driven by the sign bit of the product. The positive numbers are sent directly

to the output of the multiplying stage while the negative numbers are fed

84

D] > S X P < - — - © Q “u D
¢ 3 w
. H . ~
}*

into the two's complementing stage. The two's complementing operation is
achieved by using a ripple adder and taking the complement of the input
before feeding it to a full adder. The second input of the ripple adder is set to
logic zero and its input carry is set to logic one. The Led schematic of the
multiplying unit is shown in Figure 6.7. The Lsim adept mode simulation
results of the multiplying stage are shown in Figure 6.8. The two inputs are a
& b and the output is the product p.The two input numbers are +127 and -127
represented as 7f and ff in 8 bit signed binary representation. The output
product is -16129l[-3f01 or -11 1111 0000 0001]. After shifting by six bits the
result is -1111 1100. As this is a negative number it is represented in the 2s
complement form as 1 0000 0100 or 104 in hexadecimal as shown in the

figure.

After the multiplying stage, there are four such products which are the
result of the first stage of a complex number multiplication operation. These
are the inputs to the adder and the subtractor. Ordinarily the subtraction of
two of these operands will give the real part of the result, but in the
generation of a covariance matrix, a vector is multiplied by its Hermetian,
which is basically the transpose of its complax conjugates. Hence the
operations are reversed and an addition is performed to obtain the real part of
the result. The imaginary part can similarly be obtained by subtracting the two

appropriate operands.

The next stage is a 9 bit adder/subtractor. The Lsim schematic of a basic
full adder circuit is shown in Figure 6.9. Figure 6.10 shows the construction of
a 9 bit ripple adder generated from the basic full adder circuit. The negative
operands are in the two's complement form. So addition is performed by

simply adding all bits including the sign bit [26]. There is an erroneous

x<
(V4]

: Pogint: (-1351,-376) mit2csft SW

7 ™M
U
L
T
I
P
L
I
C
a
N
D

25 Complementing
Stage

OQUTPUTS

Figure 6.7 :Led top level Schematic of Multiplying stage

86

o

B e e a B e e e e o S e g Ea st A S RS Sk I SR]

1.5 3.0 45 60 7.9 9.0 10.5 12.0 13.5 15.0 156.5

U 00 Lod D Ade DU IMOAE SATIULITON O GIC S OIE Y MObe artady bl Daet

R

$aBU)S 10IPNUWINIOY pUP 1apPP Ay Ul PAsn IaPPY [N JO duPWayds pa @ ¢'9 am3r

) =
n
-y
-]
©
)
N
8]
L)
'
o
N
'
-
n
)
c
)
$
c
=)
Q
4
LJ
Q
-
1}

Tigure 6.10 :

Led top level Schematic of a 9 bit adder

ADDER OUTRPUT

89

reversal of the sign bit if an overflow occurs. To correct the above error.the
carry into the sign bit position and the carry out of the sign bit is observed.
The two carrys are applied io an XOR gate and the overflow is detected if the
two carrys are not equal. Then the result is applied to another XOR gate along
with the MSB to obtain the correct result. The Lsim simulation results of the
adder are shown in Figure 6.11. The two operands are a and b and s is the
output sum. For example the two input numbers are +80 (0 0101 0000 or 050)
and +70 (0 0100 0110 or 046) and the nutnut is +150 (00 1081 ¢110 or 026).

Subtraction is carried out in a similar fashion. Subtraction in two's
complement arithmetic is verv simple and can be achieved by taking the
two's complement of the subtrahend (including the sign bit) and adding it to
the minuend(including the sign bit). The basic full subtractor unit is shown
in Figure 6.12 and the top level Led schematic of a 9 bit subtractor is shown in
Figure 6.13.} The input carry of the LSB is set to logic one and the subtrahend
is complemented to achieve the subtracting operation. The overflow is once
again resolved as explained previously. The Lsim results are also shown in
Figure 6.14. For example when the minuend is -80 (1 1001 0000 or 1b0 in two's
complement form) and the subtrahend is +70 (0 0100 0110 or 046) the

difference is -150 (11 0110 1010 or 36a in two’s complement form).

The last stage in the arithmetic unit is the accumulator. The
accumulator basically consists of a 16 bit adder and a demultiplexing unit as
shown in Figure 6.15. One operand of the accumulator is the output from the
previous adder/subtractor stage. The other is the previously stored result in
the memory to which the newly computed value needs to iae added. The
output is connected to a demultiplexing stage which places the data either on

die UIRIULY DUS, wrlillily the (esuil DACK W HIE Memory Ol vl Uie Prodessor

90

Qoo o ane
AT S - “ha

Ju 1 L 163 : 362

B i o B S e S o o e e S D e e o e o o SO |
313 17 21 25 23 33 37 41 45 43 53 57 61

Figure 6.11 : Lsim adept simulation of 9 bit npple adder

a8r1$ 101000GNS 11 6 YT UL PASN 101IRIIGNS [© JO dNRWAYIG pa] : 719 T

WS 139ns (t:2°¢E)

: Point:

(47,135) subtractor9 SM

3
riz Csign Bit

l e3>

—a
a-
c =3

DIFFERENCE

pHe) o BM| o HE| p HE| o EE| o &b ?HH

MINUEND and SUBTRAHEND

e o
€ o3
a
c =2
'
c =3
o]
c =
0
@
o]
& =g
T .

'R

Figure 6.13 : Ledtop level Schematic of 9 bit Subtractor

R
'

Figure 6.14 : Lsim adept simulation of 9 bit subtractor

diff

mineund

subtrahend

g4

2: Point: (=85,201) accumulator SM

ADDER DEMUX
STAGE STAGE

&3 = o
2 i
=
-4% y ‘—'-‘31$
. -
31 *ghﬁ#g
13} Ezg g’%%)
+ - *;
J = o]
a g < T“J’% o O
- E'“-g B3 2L
a w
5 # 34 S
o O o
iy — .
o a [
— oo
: 2%
0 : £ g—gég g ©
0 i 3,
T ® ERCEEE
g L £
SR
e
i
h
! o
a

Figure 6.15 : Led top level Schematic of Accumulator stage

out bus which signifies the completion of the processing of one frame of data.
The demultiplexor is controlled by the global reset signal which is obtained
from the control unit. The simulation results of the accumulator are shown
in Figure 6.16. As seen tfrom the figure the inputs are a and b while the two
outputs are mem (output to memory) and PR (processor output). When the
global reset (GR) is pulled up the sum is put on the processor out. After it is
pulled down the output is put on the mem. When the inputs are +70 (000
0000 0100 0110 or 0046) and +86 (000 0000 0101 0110 or 0056) and the input
carry is set high then the result is +157 (000 0000 1001 1101 or 009d).

A major block which has been included in the schematic is the random
access memory which is used to store the intermediate results of the
operations. The required memory has been placed outside the chip so that a
commercially available component can be used in conjunction with the
processor ASIC to generate a reliable system. The memory is interfaced to the
processor by a multiplexor as shown in the schematic of the processor. The
data in and data out buses are connected to the multiplexor which is
connected to the memory bus. The multiplexor is controlled by the input
clock. The input clock has a duty cycle of 50% and hence can be used as a
read/write signal. When the clock is high the processor reads from the
memory and when the clock goes low the processor writes the output back to
the memory. The size of the memory required for the operation is primarily
dictated by the operations in the BASS-ALE algorithm which stores upto 2%
elements during the computation of one covariance matrix. These elements
are 32 bits wide including the real and imaginary components and hence
require a RAM 16K bits in size. The RAM has a READ/WRITE signal, an

enable and a reset signal which initializes all arrays to zero.

96

Tivure A 1A .

T ciove adant cimasiiarian AfF !& kit n_r_*r_*-vmnhnﬁr

e

PR

HEHOUT 14
NMENMOUT L2
PENMCULL3

MENCSUtL10

PEMOUT 11

MEMOUTS

NMENOUTS

MENJQUTB

MEMJUT 7

MEFIUUTA

HMEHOUTS

NEINOTZ

HEHOUT3

MEMOUTO

MEMOUT1

For simulation purposes M model code was written for the RAM and
the Lsim simulations were carried out in the multi-level mode. The code for

the M model of the RAM is shown in Appendix B.
6.3.3 The control units

The function of the control units is to generate the correct address for
the retrieval of data from the memory during the accumulation stage. The
control unit should also generate the global reset pulse once the processor
tinishes its cycle of operations. As most of the required control operation is
basically to count the number of loops that the svstem has executed, the
control unit consists mainly of counters. The counters are the asynchronous
ripple type with a Master Slave T flip flop as the basic unit. A Led schematic ot
the MSFF is shown in Figure 6.17. The output of one flip flop is connected to
the clock input of the next flip flop to generate the ripple action. The

schematic of a 6 bit counter composed of the MSFF is shown in Figure 6.18.

The control unit for the narrowband MUSIC algorithm as shown in
Figure 6.19 consists of two counters one of which is a 3 bit counter which
upcounts to 7. This three bit counter is used to generate the address bits for
the storage of the 8 different elements that are computed. The 6 MSB of the 9
bit latch are grounded, so the 8 elements will occupy the memory cells from
000000000 to N00000111. Even though there are only three address bits a 9 bit
latch is used because the address bus outside the control unit is 9 bits wide.
The outputs of the 3 bit counter are fed to a 3 input AND gate which generates
the clock pulse for the 12 bit frame counter. The frame counter counts the

4096 loops that need to be executed during the accumulation process.

9%

saopunoa opddu agy w pasn dog diyy aavps amsews od4y 1 e jo onvwayag pory 2] "9 a3y

94

12: Point: (42,115) countBb SM

outputs

Counter

Figure 6.18 : Led Schematic of 6 bit counter used in the control circuitry

101

W08y DISMIN PUBGMOIIPN I0] 1TUN [OHUD JO dSHRYWAYIS P] © 619 iy

Yyo3ie sssJppy
B €& 8 8 &8 8 a8

dO TS

c3Unoo

g2 121uUnoo

AR

WS uocdJeu (@pZ‘ebl) :julod

The control unit for the BASS-ALE algorithm as shown in Figure 6.20
has four counters, three of which are used to generate the address bits. The
first counts the number of elements in the column, the second counts the
column number in the micromatrix while the third keeps track of the
micromatrix number in the submatrix. The required memory is 29 and the
address runs all the way from 000000000 to 111111111. The 9 bit counter
controls the numbers of frames which the processor needs to.accumulate

which in this case is 512.

The control unit for the bilinear transformation algorithm as shown in
Figure 6.21 has a 3 bit element counter to count the element number in the
column. The next one a 6 bit counter, is used to count the 33 frequencies and
hence upcounts from 0 to 32. Once it reaches 32, the logic circuitry (which is a
NOR gate with an inverted MSB) resets it to zero and clocks the 6 bit frame

counter. The frame counter counts the 64 frames that need to be accumulated.

Once all the modules were individually simulated they were called as
instances into the top level processor cell in Led and connected. The netlist
was generated and an Lsim simulation was run on the netlist. The results of
the simulations are shown in the Figure 6.22. The inputs to the multipliers
are miltina, mltinb, mitinc and mltind. Two of these are the imaginary and
real parts of the X input while the other two are the elements of the Y vector.
The outputs of the complex multiplication are add and sub, while accl and
acc2 give the values after accumulation. The input to the two accumulators
from the memory are given by meml and mem2. The processor was
simulated over two cycles and the multiplication and accumulation

operations were verified.

102

WPHOB [V-SSVE 24T J0J U [01U0D JO IRLWAYIS Par] 1 (07’9 2ndiy

081uUnoo

1NO ss32aay

aunaoo3

gEaunoo qe31unoo

WS juodsseq (ISI‘ZEI) ‘julod

103

104

UIYHI0|e UONTULIOISUPL] JeAUIIg 10] JIUN [O1U0) JO dNRWAYdS pa : {79 anduf

yljije] ssaJdppy

8

goaunoo

g 4 € 9 € 9 9@ ¢

s
n

f o
L=

i

T@pcnou

HG 3u021q (ZEI°Z1E) :julod

n
[~
o}
jus
o~
®
[
]
~J
v
W
e
pe

m.e Display Wind

0]

noresilts of tee covarmanee ot pao

|

3y

Pigine 6

A particular computation is given as an example below:

Consider the case in the second cycle where the two elements
multiplied are 54 + i41 and -109 + i116. They can be represented in
hexadecimal as 36H + 129H and -6dH + i74H. They are given to the four
multiplier inputs as mlitina, mitinc, mltinb and mitind as the eight bit signed
binary numbers 36,29,ed and 74 respectively as shown in Figure 6.22. The

outputs of the multiplier are shown below:

Product Before shift After 6 bit shift
axb = 36 x -6d 1010110 1111 1110 (-16fe) 10101 1011 (-5b)
cxd =29 x 74 001 0010 1001 0100 (1294) 00100 1010 (4a)
bxc¢ =29 x -6d 1010001 0111 0101 (-1175) 10100 0101 (-45)
axd =36 x 74 001 1000 0111 1000 (1878) 0 0110 0001 (61)

The next stage is the adder/subtractor stage. The calculations are
ab + cd =-5b + 4a =-11(1 0 0001 0001) or (1 1 1110 1111 or 3ef in 2's complement)
ad - bc =61 - (-45) = a6 (0 0 1010 0110 or 0a6)

The adder output (3ef) which is the real part of the product and the subtractor
output (0a6) which is the imaginary part are shown in the figure (add & sub

signals). These signals are one of the inputs to the accumulator stage.

The two signals mem1 and mem?2 are the other input to the accumulator

stage. These are the accumulator outputs (accl and acc2) from the previous

106

cycle which are read in from the memory The accumulator calculation is

shown below:
add + mem2 = acc2 (negative numbers are in 2’s complement form)
3ef (1111101111 or -11) + 7fed (1 11 1111 1110 1010 or -16)
=7fdc (1111111 1101 1100 or -27)
sub + mem1 = accl
0a6 (0 0 1010 0110) + 0055 (0 00 0000 0101 0101) = 00fb (0 00 0000 1111 1011)
The processor function can be verified from the above calculations.

The retlist for the processor was generated from the Led schematic.
Then AutoCells was used to generate the layout of the processor. Figure 6.23
shows the layout of the complete processor. The lavout was verified by
simulating the netlist for the whole processor. The terminal were placed so
that the routing to the pins can be done very easily. The data input terminals
and the input control signals are placed at the top. The data bits (memory and
processor out) are placed at the sides and the address bits are placed at the
bottom. The processor was layed out in 25 rows and the total area was

approximately 2200 x 5800 um?.

The pin diagram for the ASIC 1s shown in Figure 6.24 The chip will fit
in a 120 pin frame available through MOSIS. The pin designation is according

to the terminal placements in the layout The data pins are: -

In0 - In7 - Real part of input element
In8 - In15 - Imaginary part of input element
Out0 - Out15 - Real part of processor output element

107

Ourlb - Oui3t - Imaginary part of processor output element
Mem(- Mem13 - Real part of memory element
Memlé - Mem31 - Imaginary part of memory element

The I/0O diagram of the processor is showrn in Figure 6.25. The data pins
are connected to the memory as shown. The address bits are supplied from
the processor and a global reset pin is supplied so that the memory chip can be

reset after one cycle of computations.

108

1;

Jossaosd XU ADUPLITAOY A} 10§ S0y Huisn pajelouad noAv gy anddnyg

2D D5 it 2l mﬂmam.,,w.k.wﬁmmﬂ.m@m%mw_a@.ﬁmmma%%%%@ﬂ.&@m%ﬂ.su,mnmﬁ%@%

1
o N o S gt It o | g I 5y WO T g o T nom T Lt Sl Vs RO Bagee g N7y | o OO P g i — sl g}

GO InaE AET BImanaraaYn Ml e BI0IAME0y @ file o TIoenta =GB o] HonH N 003 Ben
AT OXO:0 n OA1D0DIEIE Y0 B U0 D000 DlpE e foi0iE £ Y0000 DO TR o) BN EaI0iayI0gyac
Sriei Bt A DG A AN ERERD) Mmrr rersnnat e 018 AT o riginr i@ nEsnam e nataIigRari arniannarn
{0 07/ (D00 50 D0 D000 Lo e ET Sintai 3l ptd) fio M0 20 878 iaitan sReaa g Tela [} [EnlsleTalnt

™~ Vs T P P

o e AL TP Swepi oy Sl AT Amntet S R L A i P oL T L T i e RN eyt oo N . MUY o o 75 SONNRpRNN |
ﬂ:.Enmmaﬁw:wmm.unﬁzau:Eu_ﬁma_aum?._mm@am_uﬁ:_acﬂ_ﬁm.m Fo G B BER T ARIBEABN D RO NS 3TN
0 onaworLg) niciacos el bo O) A0 DOIGIRIG T GOm0 e 5 I ERiBR 0 00 PR Db EGn TR0 GITen
R rRin e T O ANMIDT B IER T T O B ED ¢ AT Oy ErurFHIE W TEER AR R r i TR DDA nrER=0I R
06001 0,i00 TA0256/ 0337 R(00)-rte) To: 00 DN 0180 NE00 D3N oA 0050, 0 a0d B307.0zA3a) i
A LR Ann PR rARATIED AN DA DR IDOr DD D TR DVIHDID A MDD RN f; 030 0.0) 10010 107 BIE BImnn
jitAT =00 000 10 1M R EMEp oM ACy NI AN Er g MonimEnoolomeaRinniioio o 012olIoCoIguHoEs

Py et b o Yoot 2 Bt - - = “ Py “omn 4 eV -1 b >
GO0y 00 IC Ora-ioHmaa ,._,manm_smsﬁﬁ_.mmmmﬁm_mm@mmﬁ_aammSmm.mumﬁa_aammgmammsbwmaFEQQE‘&%

OMolln

[ia1 2 bkl] o Eoge T {{ (¥ {5 [0 e x i tafe ,zﬁ@_ﬁmmmnu.mﬁmmmmmmaquﬁM.u.aﬁh.mﬂﬂwm@n_m@wﬂn@a.u..u.am
Crrmp FF-000 QA RR S AN FERAN Aie O A M- A AEEEIRMIN 0 CpRrrIsr Py PR AN A sasinh NHITO men
sty nhe) elastiaih Vb ake B Rl b N e Tt Dol bt X L BRI g iR 012128 O,0C 03300030 0IGRICED iIcen
TROG-P3 oIZEH o0 DR IEcAR EIn e IOINEN: Bm3ND 17 cien AR CEidn AR A PRI 00 DEALICA N 30rmiETn
IRl FEI0 100N eI Lok 003 BNnaa 01 inann o) o n0A] 050W K00 KenuiniEpll. ooty
WP FoiChAnmg oot -Ennan e 1ye ?@ﬁﬁmW.m..,..a_:,maﬁnmu.._mmm T ls s = Rk S i sl BRI L) b (R A, ® ARl

S ¢ P @ 4

0 0 i3 0 05000l oi 00 O 006 5 (DD @ 10E0 Brop AT I LD 0 G DD D00 2

61\ Fon ARFAIFAINIO R QT QAN LONp AIFNFNErRanE DA ERTIC M Minn inmintPa rcinen TN AR InTn
0" g 0io0ion) DY e oc 0t onieae 0o piifre Bia136ie3a0 JUonouCMaRIoNnIA00 G100 Tudi eI
ORC A A IR DRI DA G G A O O C3EnmmgN N T RN avh@t D e e ek e bz T e 2 42 AL [R (el e i

O im w00 D000 earia: an T (aTe (L (AL n] ({45, eNCimoars-g 86033 17000l 0 BI0IF R0 €000 g NONIREI0N
A B T e Tl S T Sl LE
N et aTel FI2IN 0o, Bl% BETH s e R s Tl Ha BB A AN) -3 . Satple skl Hie) {
gliattise o — G aresliehot e maum-,munnmunml.m@uﬁuauﬁmmmac_mx_lp_mw_.mmmm.mmmw..amaw_wﬁ"__nm_uun_aﬁm.u

o
(0]
M
0
A
D
n
0
=

e oy 4 = ot o o | o 0 0 s e

7 Jossadodd (B°'O)

O
=)

0O
=
o

0

0
N
H

N oanAonnQaaoOoaanoonnononAanonoonoornn

Y ulalalnl

<
o

Inl

In5

6 O
in7 O

in2
In3)
nd O
in8 1
In9 [}
nnigg
iz
In130
in14]
I E] a)
Load clock)
Input clock ")
Mode 03

Out0 Mem0
Outl Mem1
Out2 Mem2
Out3 Mem3
Out4 Memd
Out5 Mem5
Outé Memé
Out7 Mem?7
Out8 Mem8
Out9 MemY
Out10 Mem1(
Outll Memi]
Qut12 Mem13
Out13 Mem1]
Out14 Mem14
Out15 Mem13
Outlé Mem14
Outl7 Mem17
Out18 Mem18
Qut19 Mem 19
Out20 Mem2(
Out21 Mem2
Out22 Mem?2
Out23 Mem?2
Out24 = Mem?2
Out25 < Mem?2
Out26 P 3 L, Mem2
7z g3 g EiLeirit 3 TEEE M
s 388 333333z 8 33233
VEd{ju UUUU?UUUUUUUUUEUUUUUUWUUUL!Lclnd

Figure 6.24 : Pin diagram for the combined covariance matrix processor on a
standard 120 pin frame available through MOSIS

110

Vdd

Gnd

REAL DATA
(InG - [n?)
ﬁ

IMAGINARY DATA
(In8 - Im15)

Mode Control
———eee I
[nput clock
P, %

Load clock 3

Covariance

Matrix

Processor

Global Reset
REAL DATA
(Mem0 - Mem15)
el MEMORY
IMAGINARY DATA

(Mem16 - Mem31)

Address Bus (9) T

REAL OUT (Out0 - Out15)

IMAGINARY OUT (Out16 - Out31)

Figure 6.25 : [/O diagram of the covariance matrix processor

111

CHAPTER 7

Conclusions

This thesis work has dealt with the problem of estimation of direction of
arrival of signals at a sensor array. In particular the wideband problem has been
investigated and the bilinear transformation algorithm has been explored and an
implementation devised. The algorithm was modified so that all the possible
parallelization and pipelining can be fully exploited. The algorithm is completely
modularized so that each module can be designed and simulated independently

of each other.

A fully parallel and pipelined architecture for the algorithm is described.
The entire architecture requires multiprocessor structure so the system is
designed using multiple modules. The system architecture consists of
commercially available components like the DSP 56000 for the FFT stage and the
ASIC chips designed for other modules. Various modules were designed with
emphasis on the timing requirements and the simplified routing of data which

are the prime necessities for a system operating in real time.

A combined covariance matrix processor has been implemented using
0.8um CMOS technology. Two other DOA estimation algorithms have been
selected namely the narrowband MUSIC algorithm and the broadband BASS-
ALE methoa. One common step in all these algorithms is the computation of the
covariance matrix and hence a combined processor has been developed which

will perform this stage of operation for all the three algorithms.

The processor has been simulated at the VHDL level using Powerview

and then at the transistor level using GDT Lsim. The construction of the

processor was done using the Lxcells utillity in GDT. Finally the processor was

laved out using GDT AutoCells.

SN NN VA TIE WG B D BE IS I 0 EE B WS EE B B S .-

APPENDICES

Il BN N BN N BE BN aE BN BN 2N AN B OB EE B AN B B

_

Appendix A

VHDL programs for various modules in Powerview

..

-- Behavioral Model for 16-Bit ACCUMULATOR.

-~ Inputs. A leg 116 bits)

-~ Bleg (16 bits

-~ Carrvin (1 bir)

-- Result register clock

-- Globul Reset

-- Quiputs: Memory data out (16 bits, lutched)
-- Processor data out (16 bits, latched)

-- Memory carry out (1 bit, unlatched)

-- Processor carry out (1bit, unlatched)

..

entity accumulator is
-- Generic delays, with default values

generic (cout_delay: time = 6500 PS: -- Carry out delay
reg_delay: time := 6000 PS): -- Register delay

-- [O ports:

port (signal mout: out vlbit_vector(0 to 15);
signal pout: out vlbit_vector(0 to 15);

signal mcout: out vlbit;

signal pcout: out vlbit;

signal a,b: in vibit_vector(0 to 15);

signal cin: in vibit;

signal GR: in vibit;

signal clk: in vibit):

end accumulator:

..

architecture behavior of accumulator is

signal accout: vibit_vector(0 to 16); -- ACCUMULATOR output: cout & dout
signal ResReg: vibit_vector{0 to 15); -- Result register

116

-- Concurrent ACCUMULATE process stutement:
-- When any inpur signal changes,
-- comptcte new: result.

add: process(a, b, cin)
variable res_18: vibit_1d(-1 to 16); -- 18-bit temporary result

constant XOUT: vibit_1d(Qw 16) := (X",
' X",

Xt
X
X
X

KX

JX
JX
X
X

b el

' X
begin
-- Compute the ACCUMULATOR output.

res_18 := add2c (add2c (a. b), "0’ & cin).
addout <= res_18(0 to 16):
end process:

register_process: process
begin

wait until clk = "1":
ResReg <= addout(! to 16):
end process:

-- Concurrent signal assignments:
-- When ACCUMULATOR output or result register chunges,

-- schedude new values on processor or memory data out pins.

if GR="1"

pcout <= addout(0) after cout_delay;
pout <= ResReg after reg_delay:.

else

meout <= addout(0) after cout_delay:
mout <= ResReg after reg_delay:

end behavior:

117

-- Behavioral Model for 8-Bit ADDER.

- Inpurs: A lew (8 bits)
-- B le¢ (8 bits)

-~ Carrvin (1 bitj

-- Resulr register clock

-- Outputs.: Data out (8 bits. lutched)
-- Carry out (I bit, uniarchedj

entity add is
-- Generic delays. with default values

generic (cout_delay: time := 4300 PS: -- Carry out delay
reg_delay: time := 4200 PS): -- Register delay

-- [O ports:

port (signal dout: out vibit_vector(0 to 7):
signal cout: out vibit;

signal a,b: in vibit_vector(0 to 7);

signal cin: in vibit;

signal cik: in vibit);

end add:

..

architecture behavior of add is

signal addout: vibit_vector(0 to 8): -- ADD output: cout & dout
signal ResReg: vibit_vector(0 to 7); -- Result register

begin

118

-- Concurrent ADD process stutement!
-~ When any input signal changes.
-- compute new result.

add: process(a. b, cin)
variable res_10 vibit_ld(-1 to 8): -- 10-bit temporary result

constant XOUT: vibit_1d(0t0 8) = (XX 'X X' XX ' X', X' ' X")

begin

res_18 := add2c¢ (add2c (a. b). ‘0’ & cin):
addout <= res_18(0 to 16).

end process.

-- Concurrent Register process statement:

-- Load up the result register. but only on rising edge of clock.

register_process: process
begin

waituntil clk =17,
ResReg <= addout(1 to 16):
end process;

-~ Concurrent signal assignments:
-- When ADDER output or result register changes,
-- schedule new values on data out pins.

cout <= addout(0) after cout_delay;
dout <= ResReg after reg_delay;
end behavior:

119

-- Behavioral Model for 6-Bit COUNTER

-- Inputs:

-- Clock (1 Bit)
-- Clear (1 Bit)
-- Enabie ({ Bit)

-- Qutputs: Data Out (6 Bits, Unlatched)

..

..

entity count6b is

generic(delay:time := 1 ns;
max:integer:= 20);

port (signal enbl : in vibit;
signal clk :in vibit;
signal clr: in vibit;
signal ¢ : out vibit_vector(0 to 5):= (*0°,0°,'0°.’0°,°0"."0"));

end countbb:

...

architecture behavior of count6b is

signal temp : vibit_vector (0 to 31):=(‘0,'0","0",0",’0°,"0’,
‘0°,’0°,’0°.°0°,°0,°0°,'0°,°0°,’0°,°0°,’0°,°0°."0",'0".,'0","0°.°0",°0",
QO"QOO“OQ"Os"O"VO‘.EOS"OO);

signal zero : vibit_vector (0 to 31):=(*0"."0",0°.°0°.70°.’0"."0","0",

'0°,°0°,'0°.'0°,'0°,°0°,°0°,'0°,°0°,°0°,°0°.0°,°0°.°0°,°0°,’0".°0"°.’0°,’0°,°0",

'0°,°0°,°0°,°0™;
signal unknown : vibit_vector (0 to 5):=(‘'x"."x","x".’x", x" . x "),
signal highimp : vibit_vector (0 to 5):=('2"."2'.’2",'2’,’2".'2");

120

-- Compute the COUNTER output.

begin
process

variable t:integer:=1 :

variable one:vlbit_vector(Q to 1):=("0","1");

begin
wait on clk.enbi:
if enbl="0" then

--counter counts from up till 31 when ‘clk’ becomes high (level sensitive).t resets to 0 once 31 -

if t=1 then
t:=0:
¢ <= unknown.highimp after delay:
end if:
--is reached
else

if clk="1" then
t:=1;
if clr="1" then

temp<=addum(zero(1 to 31),one);
¢ <= zero(26 to 31) after delay:

else

if vld2int(temp)>max-1 then
temp<=zero;

else

temp<=addum(temp(1 to 31).one);

end if;
¢ <= temp(26 to 31) after delay;
end if;

end if:

end if:

end process:

end behavior:

1

1

-~ Behavioral Model for 8-bit LATCH

-~ Inpuus:

-~ lat (1 Bit)

- lin (8-bit input duta)
-- Enable (1 Bit)

-- Qutputs: lout (8 Bits)

entity latch8b 1s

generic(delay:time := | ns;
setup:time := [ns):

port (signal enbl: in vibit:
signal lat : in vibit:
signal lin : in vlbit_vector (0 to 7):

signal lout : out vibit_vector (0 to 7)):

end latch&b;

architecture behavior of latch8b is

signal temp : vibit_vector (0 to 7);

signal highimp : vibit_vector (0to 7):=(‘2".'2".'2"."’2"."2".’2".’2"."2"):

122

process
variable t.c:integer:=1 ;
begin

--latch output is in high impedunce state when enuble is deasserted.
--When enbl is asserted, the incoming data is lutched in and appears at the output when the
--lat signal is assserted.

wait on enbl.latlin;
if enbl="0" then
if t=1 then
t=0;
lout <= highimp after delay:
end if:
else
temp<=lin after setup;
if lat="0" then
if c=1 then
lout <= temp after delay:
c:=0:
t:=1:
end if:
else
c:=1;
end if:
end if:
end process:
end behavior:

| S Tam SUR WD I WD W BB En WU N WS NN SN BN mE AN B me

-- Behavioral Model for 8-bit Two's Complement Multiplier

- Inputs.
--a (8-bit input data)
== b 18-bit inpur data)

-- Outpurs: ¢ (8 Bits)

..

entity mult8bt is
generic(delay:time := 10 ns):
port (signal a.b : in vibit_vector(0 to 7

signal ¢ : out vibit_vector(0 to 7));

end mult8bt;

architecture behavior of mult8bt is

signal temp : vibit_vector (0 to 15);
signal unknown : vIbit_vector (0 to 7):=(‘x"."x"."x .’ x" . x"x", X", X)

begin

temp <= mul2c(a.b);

¢ <= unknown,temp(0 to 7) after delay:
end behavior:

124

-- Behavioral Model for 8-bit Two's Complement subtractor

- {nputes:

-- A8-Dit inpur duta)

-- B (8-hit input duta

--CLK (1 Bir)

-- Ouputs: SOUT (8 Bits)
COUT (! bit)

..

entity subt is
generic(delay:time:=1ns):
port(A:in vibit_vector(0 to 15):
B:in vibit_vector(0 to 15):
CLK:in vibit;

COUT:out vibit:

SOUT:out vibit_vector(0 to 15)):
end subt:

architecture behavior of subt s

signal S:vlbit_vector(0 to 16):
begin

...

begin

wait until CLK="1";

S <= sub2c(A.B);

end process:

SOUT <= S(0 to 15) after delay:
COUT <= S(16) after delay:

end behavior:

125

-- Behavioral Model for a 3-10-8 decoder used in the louding
--control unit.

-- Inpurs:
-~ d (2-bit input data)

--CLK (1 Bit)
-- Outputs: o0 to o8 { 1 bit each)

. entity ldec3 is
generic(delay:time := | ns);
l port (signal a : in vibit_vector(0 to 2):
signal clk : in vibit;
signal o0 : out vibit;
l signal o1 : out vibit;
signal 02 : out vibit:
signal 03 : out vibit;
l signal 04 : out vibit;
signal 05 : out vibit;
signal 06 : out vlbit;
. signal o7 : out vibit);
end Idec3;

architecture behavior of ldec3 is

sigrial temp : vibit_vector (0 to 7) := (*0°,°0°.’0°.’0"."0°,°0°,°0",'0");
signal unknown : vibit_vector (0 to 7):=("x"."x".’x"."x".'x’.x", "X, x);
signal highimp : viIbit_vector (O to 7):=(‘2","2","2"."2"."2".’2".'2",'2’);
begin

Idec3_process:process
variable num:integer:
begin

...

temp(0to 7) <= (‘0°,'0",°0",°0","0",'0"."0",°0"):

126

wait until ctk = "1
if v1d2intta)=0 then

temp(0) <="1":
else

temp(0) <="0":
end if:

if vld2inwa)=1 then
temp(l) <="1";

else
temp(l) <='0";

end if:

if vld2int(a)=2 then
temp(2) <="1"

else
temp(2) <="0"

end if:

if vld2int(a)=3 then
temp(3) <="1"

else
temp(3) <="0";

end if;

if vid2int(a)=4 then
temp(4) <="1"

else
temp(4) <='0";

end if;

if vld2int(a)=5 then
temp(5) <="1"

else
temp(5) <='0",

end if;

if vid2int(a)=6 then
temp(6) <="1"

else
temp(6) <="0";

end if:

if vid2int(a)=7 then
temp(7) <="1":

else -
temp(7) <="0"

end if;

127

00 <= temp(0) after delay:
ol <=temp(1) after delay:
02 <= temp(2) after delay:
03 <= temp(3) after delay:
04 <= temp(4) after delay:
05 <= temp(5) after delay:
06 <= temp(6) after delay;
07 <=temp(7) after delay.

end process;
end behavior:;

128

Appendix B

Fortran program used to simulate the bilinear transformation algorithm

M

« This program esumat

real kr(33.8.8),ki(33.8.8).pm(360)
real gr(S.S').gi(&S).wr(S),wi(S).xx 1(15)xx2(15)
real rr(8.8),ri(8.8).ur(8.8).ui(8.8).nx(,3.8),yr(8.8)
real sir(15).s11(13). s2r(15). $21(19)£(33)
real nr(3.8). ni(3.8). xr(S).xi(8),zr(64.8),zi(64.8)
real bb(64). cc(64).br(64,8). bi(64,8),b(8.8)
real tr(8.8).t‘1(8.8).m(8,8),ui(&S),gnr(8.8)‘gni(8.8)
real fc.1i(8.8).1r(8.8)
integer option
integer seed, nout. d
external mset. munf, umach
seed=345
pi=acos(-1.)
print *.’0 for partially coherent, 1 otherwise’

read *.option
print *, ‘input the number of sensors’

read *. ns

print *, ‘input the signal power’
read *, sigl

print *. ‘input the noise power’
read *, sig2

stdev 1=sqri(sigl)

stdev2=sqri(sig2)
open(unit=1 file="1.dat" status=’ new’)

open(unit=2 file="2.dat’ status="new’)
open{unit=3 file="3.dat’ _status="new’)
opcn(unit=4.ﬁlc=’4.dat'.status='new')
open(unit=5.ﬁ)c='5.dat’ status="new")

£
* [nitialize the covariance matrices
do 1 i1=1.33

do 1 j=1l.ns

do { k=18

kr(i.j.k)=0.

ki(i.j.k)=0.

| continue

print * *Covariance Matrix initialized’
*

* Generate signals for sources

*

e the DOA's using the bilinear

ansformation

yi8.8)

seed=123
call umach(2,nout)
cali mset(seed)
temp | =rnunf()
seed=seed+2
phase {=2*pi*temp|
call umach(2.nout)
call mset(seed)
temp2=rmunf()
phase2=2*pi*temp2
call gauss(stdev1.x,seed)
xx1(1)=.164*x
xx2(1)=xx1(1)
sir(=xx1(1)*cos(phasel)
sli(D=xx1(1)*sin(phasel)
s2r(D=sir(l)
s2i(D)=s1i(1)
if (option.eq.0) goto 12
call gauss(stdev1,.x.seed)
xx2(1)=.164*x
s2r{1)=xx2(1)*cos(phase2)
s2i(1)=xx2(1)*sin(phase2)
12 call gauss(stdevl,x,seed)
xx1(2)=.164*x+1.37*xx1(1)
xx2(2)=xx1(2)
slr(2)=xx1{2)*cos(phasel)
sli(2)=xx 1(2)*sin{phasel)
s2r(2)=s1r(2)
s21(2)=s1i(2)
if (option.eq.0) goto 13
call gauss(stdev,x,seed)
xX2(2)=.164*x+1§.37*xx2(1)
s2r(2)=xx2(2)*cos(phase2)
s21(2)=xx2(2)*sin(phase2)
13 do 21=3,15
call gauss(stdev1,x,seed)
xx1(1)=.164*x+1.37*xx1(1-1)-.723*xx1(i-2)
xx2()=xx1(1)
slr()=10.*xx1(i)*cos(phasel)
s1i{i)=10.*xx1(i)*sin(phasel)
s2r(i)=s1r(i)
s2i(i)=s1i(1)
if (option.eq.0) goto 2
call gauss(stdevl,x.seed)
Xx2(1)=.164*x+1.37*xx2(i-1)-.723*xx2(i-2)
s2r(i)=10.*xx2(i)*cos(phase2)

THIS
PAGE
IS
MISSING
IN
ORIGINAL
DOCUMENT

/3 -

R e W W —
- N Un B o
D TR R T o 20 U e e =

xx 1(kK)=xx1(k+1)
xx2(k)=xx2(k+1)
7 continue
call gauss(swdevl.x.seed)
xxl(;15)=.l64*x+l‘37*xx1(14)-.723%xx1(13)
xx2(19)=xx1(15)
sir(15)=xx1(15)*cos(phasel)
sli(15)=xxi(15)*sin(phascl)
s2r(15)=s1r(15)
s2i(15)=s11(15)
if (option.eq.0) goto 15
call gauss(stdevl.x.seed)
xx2(15)=.164*x+1.37*xx2(14)-.723*xx2(13)
sZr(l5)=xx2(15)*cos(phase2)
s2i(15)=xx2(1 5)*sin(phase2)
15 do k=1.ns
ax(1.K)=nx(2.k)
nx(2.k)=nx(3.k)
call gauss(stdev2,x.seed)
ax(3.K)=.164*x + 1.37*nx(2.k) - .723*nx(1.k)
nr(3.k)=nx(3.k)*cos(phase)
ai(3.k)=nx(3,k)*sin(phase)
enddo
do 8 k=1,ns
jl=16-k
2=17-2%k
xr(k)=s1r(j 1)+s2r(j2)+nr(3.X)
xi(k)::sli(jl)+s2i02)+ni(3,k)
8 continue

5 continue
*

* Compute the FFT for every sensor output
*

n=564

m=6

do k= l.ns

do 1=1.64
bb()=zr(1.K)
ce(D=z1(1.k)
enddo

call fft (bb,cc.m.n)
do 1=1.64
br(l.k)=bb(l)
bi(l.k)=cc()
enddo
enddo

133

*

* Generate the data covariance matrices

do ¢ j=1.33

do 9 k=l.ns

do 9 l=1l.ns
kr(j.k.D=kr(j.k.D+br(j.k)*br(j,)+bi() k) *bi(j.1)
kigj.k.)=ki(j.k.)+b1j.k)*br(j.1)-bi{j.)*br(j.k)
9 continue

4 continue

do 10)=1.33

do 10 k=l.ns

do 10 1=1.ns

kr(j.k.D=kr(j.k.1)/64.

ki(j.k.D=ki(j,k,1)/64.

10 continue

print *."Covariance matrix computed’

* Computation of the transformation matrix
*
b(l.D=1
b(1.2)=7
b(1.3)=21
b(1.4)=33
b(1,5)=35
b(1,6)=21
b(1.7¥=7
b(1.8)=1
b(2,1)=1
b(2.2)=5
b(2.3)=9
b(2.4)=5
b(2.5)=-5
b(2.6)=-9
b(2,7)=-5
b(2.8)=-1
b(3.1)=1
b(3.2)=3
b(3.3)=1
b(3.4)=-5
b(3.5)=-5
b(3.6)=1
b(3.7)=3
b(3.8)=1
b(4.1)=1

134

b(4.2)=1
b(4.3)=-3
b(4.4)=-3
b(4.5)=3
b(4.6)=3
b(4.1)=-1
b(4.8)=-1
b(5. =1
b(5.2)=-1
b(5.3)=-3
b(5.4)=3
b(5.5)=3
b(5.6)=-3
b(5,7)=-1
b(5.8)=1
b(6.1)=1
b(6.2)=-3
b(6,3)=1
b(6.4)=5
b(6.5)=-5
b(6.6)=-1
b(6.7)=3
b(6.8)=-1
b(7.H)=1
b(7.2)=-5
b(7.3)=9
b(7.4)=-5
b(7,5)=-5
b(7,6)=9
b(7.7)=-5
b(7.8)=1
b(8.1)=1
b(8.2)=-7
b(8,3)=21
b(8.4)=-35
b(8.5)=35
b(8,6)=-21
b(8.7)=7
b(8,8)=-1
print *," Transformation matrix generated’
*

* Initialize the covariance matrix
»
doi=l.ns
doj=l.ns
gr(i,))=0.

135

gi(i.j)=0.

gnr(i,j)=0.

gni(i.))=0.

enddo

enddo

fc=1.

a=2./32.

print *,"Covariance matrices initialized’
print *.a
*
* Computaticn of G and Gn
P

doi=1,33

print * float(i)

f(i)=float(i)*a
print * £(i)

do j=1.ns

do k=1,ns

(i K)=b(j.k)*(2*fc/f(i))**(k- 1) *int(cos(float(k-1)*pi/2.))
ti(j,k)=-b(j.k)* (2*fc/f(1))** (k- 1 y*int(sin(float(k- 1) *pi/2.))
enddo
enddo

do j=l.ns

do k=l.ns

tr(j.k)=0.

tti(j.k)=0.

do I=1.ns

wr(j.k)=tr(j K+)*kr(.1Lk)- gD *ki(.Lk)
tti(j.k)=tti(jk)+r(jH*kiG L)+ *ke(i k)

enddo

enddo

enddo

do j=1.ns

do k=1.ns

do I=1.ns
gr(jJ)=gr(j.k)+ur*tr(k D+, D*tick D)
gitj.k)=gi(j.k)-tr(,D*ti(k. D+t D*wk.h
gar(j.k)=gnr(j.J)+rl)*r(k.H+tig,D*hck.bh
gni(j.k)=gni(j.k)-r(j 1y *tick.D+t(j,D*u(k.D
enddo

enddo -

enddo

enddo

print *,'Printing Resultant matrices’
doi=1.ns

print *, (gr(1.k).k=1.ns)

136

print *, (gi(i.k).k=1.ns)
enddo

print *° =

doi=l.ns

print *_ (gnr(i.k).k=1.ns)

print *. (gni(i.k).k=1.ns)

enddo

call cho (gnr.gni.lr li.ns)

print *,"Cholesky decomposed”
print *."Printing Triangular matrix *
doi=1,ns _

print *,(Ir(i.k).k=1,ns)

print *, (li(i.k).k=1,ns)

enddo

print *’

call tdat (Ir.}i,gr,gi,yr.yi.ns)

print *."Printing Eigendecomposed matrix *
doi=1,ns

print *, (yr(i,k).k=1.ns)

print *, (yi(i,k).k=1.ns)

enddo

print *°

call hhc (yr,yi.rr.riur,ui.ns)

rint *"Printing output of householder transformation *
p g

doi=1,ns

print * (1r(i.k).k=1,ns)
print *, (ri(i,k).k=1.ns)
enddo

print *.

do i=1.ns

write(3,100) (rr(i.j),j=1.ns)
enddo

write(3.%) **

do i=1,ns

write(3.100) (ri(i,j),j=1.ns)
enddo

print *,°2°

close(unit=1)

close(unit=2)
close(unit=3)

*

call gre (rr.ri,tr.ti,ur.ui.ns)

print *,'Printing output of QR transformation *

137

doi=1l.ns

print * (urti.k).k=1l.ns)
print *_ (ui(i.k)k=l.ns)
enddo

print * ‘s========= = =======azsss’
do i=l.ns

write(4.100) (tr(i,}),j=1.ns)
enddo

write(4,%) * *

do i=l.ns

write(4,100) (1i(i,j),j=1.ns)
enddo

print *.°3’

close(unit=4)
100format(2x.8f11.2)

d=2
call power (ur,ui,pm.d,ns)
do i=1.90
ji=i-1
write(5.*) pm(i)
enddo
write(5,%) **
close(unit=5)
stop
end

%

* This subroutine performs the Cholesky decomposition
£

subroutine cho(cnr.cni.lrli.n)

real cnr(8.8).cni(8.8),1r(8.,8),1i(8.8)

print *."Starting to decompose Cholesky’
doi= l.n

doj=1l.n

Ir(i,j)=cnr(i,})

li(i,j)=cni(i,})

enddo

print *.Ir(i.1).1(1.1)

enddo

do 1 k=l.n

do 2 i=1.k-1

sr=0).

138

si=0.
do 3 j=1.i-1
sr=sr+ir(l)*Irck i+ p*lick)
si=si+r(i.j) ik j)- i g*rk.j)
3 continue
*
print *.Ir(i,i).1(1.10)
Ir(k,D)=(Ir(k.D-sr)/lr(1.1)
ligk)=(li(k.)-si)/r(i.0)
2 continug
sr=0,
si=0.
do 4 j=1k-1
sr=sr+ir(k,))*Ir(k) +ick.j)*tick.))
4 continue
t=abs(cnr(k.k)-sr)
if (t.g1.0.) then
Ir(k.k)=sqrt(t)
else
Ir(k.k)=0.
endif

I
i
1
i
i
i
i
1
I
' litk k)=0.
I
!
I
|
I
!
I
i
i

1 continue
doi=1,n
doj=i+l.n
Ir(i.j)=0.
1i(i,j)=0.
enddo
enddo
return
end

&
* This subroutine performs the eigendecomposition of

* (G,Gn) to (Y.)
¥

subroutine tdat(lr,li,cr,ci.yr,yi,n)

real Ir(8,8),11(8,8).cr(8,8),ci(8.,8),yr(8,8),yi(8.8)
real xr(8,8),xi(8,8)

do j=l.n

print *'Lr value is’
print *.Ir(j,j)

xr(1.))= cr(1 pAr(L,1)

xi(1.j)= ci(} PAr(L.1)

enddo

do 1i=2n

I S

dolj=ln
sr=0.

si=(.

do 2 k=1.-1

stasrHr(L KOk -tk xick g
si=si+Ir(ik) *xuk P+ *xrik.y)
2 continue

print *.lr(1.1)
xr(iJ)=(cr(ig)-srylr(iy)
xi(i.))=(citif)-st)/r(iD

1 continue

do j=l.n

yr(1.)= xr§. DAr(L.1)

vi(L.)= xi@. /(1. 1)

enddo

do 3i=2.n

do3j=in

sr=0.

si=(.

do 4 k=1.i-1
sr=sr+ir(ik)y*yrik,) +ik)*yik,j)
si=si+lr(ik)*yick.))- ik *yr(k.p)
4 continue
yr(i,p=(xr(j.0)-st)/lr(i.i)
yi(i)=(xi(j.1)-si)/lr(i.1)

3 continue

return

end

* Householders Algorithm for complex data

subroutine hhe (yr,yi.m,n,ur,uin)

real rr(n.n).ri(n,n).ur(n.n)ui(n,n),wr(8).wi(8)
real yr(n.n).yi(n.n)

8

* Injtialisation for the eigenvectors
¥

do!li=l.n

do2j=1l.n

ur(i.j)=0.0

ui(i,j)=0.0

2 continue

1 continue

do 3i=l.n

ur(i,i)=1

ui(i.1)=0
3 continue

*

* Compute houscholder’s transformations’
*

do 4i=1.n-2

r1=0.0

do § j=i+1.n
rl=rl+yr(.D*yr(j.D+yi(j.)*yi(.i)
S continue
d=sqri(yr(i+ 1) *yr(i+1.D)+yi(i+ L) *yi(i+1.1))
rl=sqrt(rl)/d
wr(D=yr(i+1.0)+r1*yr(i+1.1)
wi()=yi(i+1.D+r 1 *yi(i+1.1)
yr(i+1.)=-r1*yr(i+1,1)
yi(i+11)=-r1*yi(i+1.1)
yr(i,i+D=yr(i+1.i)
yi(i.i+D=-yi(i+1.i)

do 6 j=i+1.n-1

wr(j)=yr(j+1.1)

wi(j)=yi(j+1.1)

6 continue

c=0.

do 18 j=i.n-1
Cc=CHWI(J)*wr(j)+wi(j)*wi(j)

18 continue

c=¢/2
k3

* Compute the update covariance data matrix for every

* gransformation

*

do 7 j=i+2.n

yr(i.j)=0.0

yr(j.)=0.0

vi(i,j)=0.0

yi(j.)=0.0

7 continue

do 8 j=i+1l.n

d1=0.0

d2=0.0

do 9 k=i+1.n
dl=dl+wr(k-1)*yr(kj)+wi(k-1)*yi(k.})
d2=d2+wr(k-1)*yi(k.j)-wi(k-1)*yr(k,j}
9 continue

dl=dl/c

d2=d2/c

141

do 10 k=i+l.n

yr(k.j)=yr(k.p-(wr(k- D)*dl -wi(k-11*d2)
yi(k.p)=yi(k.j)-(wr(k-1 y¥d2+witk-1*d1)
10 continue
8 continue

do 11 j=i+l.n

d1=0.0

d2=0.0

do 12 k=i+1.,n
dl=d1+wr(k- 1 *yr(j.k)-witk- D*yi(.k)
d2=d2+wr(k- 1)*yi(j.k)+wilk- D)*yr(}.k)
12 continue

dl=dl/c

d2=d2/c

do 13 k=i+l.n

yr(j.k)=yr(j,k)-(d1*wr(k- D+d2*witk-1))
yi(j.k)=yi(j.k)-(d2* wr(k- 1)-d1*wick-1))
13 continue

11 continue

s

* Compute the eigenvectors

x*

do 14 j=i,n

d1=0.0

d2=0.0

do 15 k=i+1.,n
d1=d[+wr(k-1)*ur(k.j)+wi(k- 1) *ui(k,j)
d2=d2+wr(k- D*ui(k,j)-wik-1)*ur(k.j)
15 continue

di=dl/c

d2=d2/c

do 16 k=i1+1.n

ur(k.j)=ur(k,j)-(wr(k- *d1-wik-1)*d2)
ui(k,j)=ui(k.j)-(wr(k-1)*d2+wi(k-1)*d1)
16 continue

14 continue

4 continue
*

E

do 17 i=l,n
do 17 j=1.n
w(ij)=yr(i,))
ri(i,j)=yi(i.)
17 continue
return

end

142

* This subroutine computes the QR transformation of the data

subroutine qre(rr.ritr.ti, ur,ui.n)
real tr(n.n).ti(n.n).qr(8.8). qi(8.8)
real rr(n.n).ri(n.n).ur(n.n).ui(n.n)
do!li=ln
do1j=1,n
r(i,j)=rr(i,j)
ti(i,j)=ri(i.j)
1 continue
iter=0
15 iter=iter+1
do2i=l.n
do2j=1n
qr(i.j)=0
qi(i =0
2 continue
do 3i=l.n
qr(..a)=1
qi(i.1)=0.
3 continue
y=tr(1,1)
do4i=1.n-1
x=tr(i+ Liy*tr(i+1.0)+tdi+1)*t(i+1.1)
if (x.eq.0.) then
y=tr(i+1.i+1)
else
x=x+y*y
x=sqru(x)
pril=y/x
pil1=0.
pri2=tr(i+1.1)/x
pil2=-ti(i+1,1)/x
pr2l=-pri2
pi21=pil2
pr22=pril
pi22=0.
do7 j=1.n
cri=pril*ur(ij)-pil1*ui(ij)+pri2*ur(i+1.))-pil 2*ui(i+1.j)
;dl=pril*ui(ij)+pil l*ur(i,j)+pr12*ui(i+1j)+pil 2*ur(i+1.j)
cr2=pr2 1*ur(i,j)-pi2 1 *ui(i,j)+pr22*ur(i+1.j)-pi22*ui(i+1.j)
ci2=pr2 1 *ui(i,j)+pi2 1 *ur(i,j)+pr22*ui(i+1.j)+pi22*ur(i+1.))
ur(i,j)=crl
ui(i,j)=cil

143

ur(i+1,j)=cr2

ui(i+1,))=ci2

7 continue

do 8 j=1.n

cri=pril*qr(i.j)-pil 1 *qi(i.ji+prl2*qr(i+1.j)-pil 2*qi(i+1.))
cil=pr11*qi(i.j)+pil1*qr(ij)+pr12*qi(i+1j)+pil 2*qr(i+1.j)
cr2=pr2 1*qrii.j)-pi2 1*qi(i,j)+pr22*qr(i+1.))-pi22*qi(i+1.j)
ci2=pr21*qi(i,))+pi2 1 *qr(i.j)+pr22*qi(i+1.j)+pi22*qr(i+1.j)
qr(i,))=crl

qi(i,))=cil

qr(i+1,j)=cr2

qi(i+1,j)=ci2

8 continue

j=i+l

y=pr2 1 *tr(i,j)-pi2 1¥ti(i.j)+pr22*tr(i+1,))-pi22*ti(i+1.))
endif

4 continue

do9i=l.n

do9j=l.n

w(i.j)=0

ri(i,j)=0

9 continue

do t0i=l.n

do 10 j=1.n

do 10 k=1.n

rr(i.j)=rr(i))+qr(i.k)y*r(k.j)-qi(.k)*ti(k)
ri(i.j)=ri(i,j)+qi(i.k)*tr(k.j)+qrii.k)*ti(k.))

10 continue

do 1l i=l.n

do 11 j=1.n

tr(i,j)=0

ti(i.j)=0

11 continue

do 12 i=1l.n

do 12 j=1.n

do 12 k=1l.n

(i p=tr(i.)+re(ik)y*qr(j.k)+riik)*qi().k)
t(i)=ti(ip+n(ik) *qr(.k)-rr(ik)*qi(.k)

12 continue

s=().

do 13 i=1,n-1

j=i+l

S=SHL(J,1)*r(j 1)+t (), *t().0)

13 continue

print *, 'QR matrix’

144

doi=l.n

print 100 , (qr(i.j).j=1.n)
print 100 . (qiti.)).j=1.n)
enddo

print *, *U matrix’
doi=l.n

print 100 . (ur(i,j).j=1.n)
print 100 . (ui(i,j).j=1.n)
enddo

do j=3.n

doi=1,2

sr=0).

si=0.

do k=1.n
sr=sr-+ur(j.k)*ur(i.k)
sr=sr+ui(j.k)*ui(i,k)
si=si+ur().k)*ui(i.k)
si=si-ui(j,k)*ur(i.k)
enddo

enddo

print * j,sr,si

enddo

100 format(2x.8f11.2)
print *,”QR iteration No: ‘.iter
if (iter.le.20) goto 15
return

end

*

* This subroutine estimates the DOA’s using MUSIC
* starts li 767

3

subroutine power(ur,ui,pm.d.n)
integer d

real ur(8,8).ui(8.8),pm(91)

real sr,se.si

a=(),

b=0.

d=2

print *, ‘D value is’, d
dok=1.n

145

=a+ur(1.k)*ur(1, k)+ui(L.k)y*ui(L.k)
enddo
a=sqrt(a)
~a=0.
b=0
do k=1.n
a=a+ur(1.k)*ur(2.k)+ui(1.k)*ui(2.k)
b=b+ur(1.k)*ui(2.k)-ui(l.k)*ur(2.k)
enddo
dok=l.n
ur(2.k)=ur(2.k)-(a*ur(1,k)-b*ui(1.k))
ui(2.k)=ui(2.k)-(a*ui(1.k)+b*ur(1,k))
enddo
a=0.
do k=1l.n
a=a+ur(2.k)*ur(2.k)+ui(2,k)*ui(2.k)
enddo :
a=sqrt(a)

do j=3.n

al=0

bl=0

a2=0

b2=0

dok=l.n

al=al+ur(1.k)*ur(j.k)+ui(1.k)*ui(j.k)
bl=bl+ur(1.k)*ui(j,k)-ui(1.k)*ur(.k)
a2=a2+ur(2.K)*ur(j.k)+ui(2.k)*ui(j.k)
b2=b2+ur(2.k)*ui(j.k)-ui(2 k)*ur(j.k)

enddo

dok=1.n

ur(j.k)=ur(j.k)-(al *ur(1.k)-b1*ui(1,k))-(a2*ur(2 k)-b2*ui(2 k))
ui(j.k)=ui(j.k)-(al*ui(1 JO+b1*ur(1,k))-(a2*ui(2.k)+b2*ur(2.k))
enddo

enddo

do j=3.n

doi=1.2

sr=0).

si=0.

dok=1,n
sr=sr+ur(jk)*ur(ik)
sr=sr+ui(j.k)*ui(i,k)
si=si+ur(j,k)*ui(1,k)
si=si-ui(j.k)*ur(i.k)
enddo

146

enddo

print * j.sr.si

print *, *Finished inner loop of tirst part’
enddo

pi=acos(-1.)

do 1i=2.90
theta=((float(i)-1)/180.)* pi
pm(i)=0.

print *,d .n

do 2 j=3.n

sr=0.

si=0.

se=().

do 3k=1.n

do 4 1=1,k-1

se=pi*sin(theta)

4continue

sr=sr+ur(j,k)*se
si=si+ui(j,k)*se

3 continue
pm(i)=pm(i)+sr*sr+si*si

2 continue

ij=i-1

print *, * PM(i) value is: *.pm(i)
pm(i)=10.*ALOG(1./pm(i))/ALOG(10.)
print *,jj. pm(i)

[continue

return

end

subroutine fft(A,D.M.N)
dimension A(N),D(N)
NV2=N/2

NMi=N-1

J=1

do 7 [=1,NM1
if(I.ge.J) goto 5
T=A)

Z=D())

A=A

D(H=D(1)

A)=T

D(D=Z

5 K=NV2

147

6if(K.ge.J) goto 7

=J-K
K=K/2
goto 6
7J=J+K
PI=3.141592653589793
do 20 L=1.M
LE=2**L
LE1=LE/2
Ul=l.
U2=0. _
W1=COS(PI/LE1)
W2=-SIN(PI/LE1)
do 20 J=1,LEl
do 10 I=J,N,LE
[P=I+LE1
Ti=A(IP)*U1-D(IP)*U2
T2=A(IP)*U2+D(IP)*U1
A(IP)=A(D-T1
D(IP)=D(I)-T2
A(D=A(D+T1

10 D(D=D(I)+T2
Ul=U1*W1-U2*W2
20 U2=U1*W2+U2*W1
return
end

subroutine gauss(sdev.a,Al)
real sdev.a

integer Al

call umach(2.nout)
call mset(iseed)
s=0).

do lii=1.12
s=s+rnunf()
lcontinue
iseed=iseed+1
a=(s-6.)*sdev

call umach(2.nout)
call mset(iseed)
return

end

148

L

Bibliography

[1] J. H. Wilkinson, "The algebriac eigenvalue problem,” Clarendon Press,

Oxford, Chapter 4, 1965

[2] J. Capon, “High resolution frequency-wavenumber spectrum analysis.

Proc. IEEE, Vol. 57, pp. 1408-1418, Aug. 1969.

[3] J. P. Burg, “Maximum entropy spectral analysis,” Proc. 37th Annual
International SEG Meeting Oklahoma City, OK, 1967

[4] R. O. Schmith, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. on Antennas and Propagation, Vol AP-34 No. 3,,

pp- 276-280, Mar. 1986.

(5] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via
rotational invariance techniques”, IEEE Trans. Acoustic, Speech and

Signal Processing, Vol. 37, No. 7, pp. 984-995, July 1989.

[6] C. H. Knapp and G. C. Carter, "The generalized correlation...", IEEE Trans.
ASSP, VOL. 24, No. 4, pp. 320-237, 1976.

[7] W.]. Bangs and P. Schultheiss, "Space-Time processing...”, in Signal
Processing, J. W. R. Griffiths et al, Eds. New York, Academic Press, pp. 577-
590, 1973.

(8] W.R. Hahn and S. A. Tretter, "Optimum processing for ...", IEEE Trans. IT,
VOL. 19, No. 5, pp. 608-614.

[9] M. Wax and T. Kailath, "Optimum localizations of multiple source by
passive arrays”, in proc. IEEE Trans. Acoustic, Speech and Signal

Processing vol. ASSP-31, No. 5, pp. 1210-1218, Oct. 1983.

(10] B. Porat and B. Frienlander, "Estimation of spatial and spectral
parameters of multiple sources”, IEEE Trans. on Information Theory, vol.

IT-29, pp. 412-425, May 1983.

[11] A. Nehorai, G. Su, M. Morf, "Estimation of time difference of arrivals for
multiple ARMA sources by pole decomposition”, IEEE Trans. Acoustic,
Speech and Signal Processing, vol. ASSP-31, pp. 1478-1491, Dec. 1983.

[12] M. Wax T.]J. Shan and T.Kailath, "Spatio-temporal spectral analysis by
eigenstructure method”, IEEE Trans. Acoustic, Speech and Signal

Processing, vol. ASSP-32, No. 4, Aug. 1984.

[13) H. Wang and M. Kaveh, "Estimation of angles-of -arrival for wide-band
sources”, I[EEE Trans. Acoustic, Speech and Signal Processing, pp. 7.5.1-

7.5.4, Mar. 19-21, 1984.

[14] H. Wang and M. Kaveh, "Coherent Signal Subspace processing for the
detection and estimation of angle of arrival of multiple wide-band
sources”, IEEE Trans. Acoustic, Speech and Signal Processing, vol. ASSP-

33, No. 4, pp. 823-831, Aug. 1985.

[15] Arnab K. Shaw and Ramdas Kumaresan, "Estimation of angles of arrivals

of broadband signals”, IEEE ICASSP-87, pp.2296-2299, 1987.

[16] DSP 56000 Simulator Reference Manual Motorola Inc. 1992

[17] D. Spielman, A. Paulraj, “Performance analysis of the MUSIC algorithm,”
in proc. IEEE Conference Acoustic, Speech and Signal Processing, Tokyo,
Japan, pp 1909-1912, Apr 1986

(18] Kevin M. Buckley and LLoyd J. Griffiths, "Broad-band signal-subspace
spatial-spectrum (BASE-ALE) estimation”, IEEE Trans. on Acoustics,

Speech, and Signal Processing, VOL. 36, No. 7, July 1988.
(19] Powerview Viewdraw reference manual Viewlogic Inc. 1991
[20] Lxcells users guide - Software Version 5.3_1 Mentor Graphics Corp. 1992
(21] Led users guide - Software Version 5.3_1 Mentor Graphics Corp. 1992
[22] Lsim users guide - Software Version 5.3_1 Mentor Graphics Corp. 1992
[23]AutoCells users guide-Software Version 5.3_1 Mentor Graphics Corp. 1992

f

[24] Ma, G.K, and Taylor F.J., “Multiplier policies for Digital Signal Processing’
[EEE ASSP Magazine. January 1990

(25] Chua O. H. and Eldin A.G. "Synthesis algorithms for multipliers used in
ASIC design” NASA symposium on VLSI Design 1993

(26] M. Mano. "Computer System Architecture”, Prentice Hall 1988.

